Interleukin-24 Suppresses the Growth of Vascular Smooth Muscle Cells by Inhibiting H2O2-Induced Reactive Oxygen Species Production

Background/Aim: The abnormal growth of vascular smooth muscle cells (VSMCs) induced by reactive oxygen species (ROS) is considered a major pathogenic process in vascular diseases. Interleukin (IL)-24 specifically inhibits cancer cell growth through the induction of cell cycle arrest and apoptosis. H...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Pharmacology 2012-11, Vol.90 (5-6), p.332-341
Hauptverfasser: Lee, Ki-Mo, Kang, Haeng-A., Park, Min, Lee, Hwa-Youn, Song, Min-Ji, Ko, Kisung, Oh, Jae-Wook, Kang, Hyung-Sik
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Background/Aim: The abnormal growth of vascular smooth muscle cells (VSMCs) induced by reactive oxygen species (ROS) is considered a major pathogenic process in vascular diseases. Interleukin (IL)-24 specifically inhibits cancer cell growth through the induction of cell cycle arrest and apoptosis. However, the role of IL-24 in ROS-induced VSMC growth has not yet been investigated. Methods: An MTT assay, gene expression analysis, flow cytometry and a scratch wound healing assay were performed to determine the anti-growth effects of IL-24 in H 2 O 2 -treated mouse vascular aortic smooth muscle (MOVAS) cells. To elucidate the effect of IL-24 on ROS-induced signaling, Western blot analysis was employed. Results: IL-24 inhibited the growth of normal MOVAS cells treated with H 2 O 2 by inducing a cell cycle arrest at the G₀/G 1 phase through the regulation of p21 and cyclin D1. Furthermore, IL-24 suppressed mRNA expression of vascular endothelial growth factor and platelet-derived growth factor and subsequently decreased the level of cell migration in response to H 2 O 2 . Interestingly, IL-24 attenuated the H 2 O 2 -induced ROS production by reducing the mitochondrial H 2 O 2 production and enhancing the expression of antioxidant enzymes. We also showed that the ability of H 2 O 2 to induce the PI3K/Akt and Erk signaling pathways was blocked by IL-24. Conclusion: These findings suggest a novel mechanism in which IL-24 suppresses the growth of normal VSMCs by inhibiting H 2 O 2 -induced ROS production through the regulation of mitochondrial ROS production and expression of antioxidant enzymes.
ISSN:0031-7012
1423-0313
DOI:10.1159/000343242