Virus Identification in Unknown Tropical Febrile Illness Cases Using Deep Sequencing: e1485

Dengue virus is an emerging infectious agent that infects an estimated 50-100 million people annually worldwide, yet current diagnostic practices cannot detect an etiologic pathogen in ~40% of dengue-like illnesses. Metagenomic approaches to pathogen detection, such as viral microarrays and deep seq...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PLoS neglected tropical diseases 2012-02, Vol.6 (2)
Hauptverfasser: Yozwiak, Nathan L, Skewes-Cox, Peter, Stenglein, Mark D, Balmaseda, Angel, Harris, Eva, DeRisi, Joseph L
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Dengue virus is an emerging infectious agent that infects an estimated 50-100 million people annually worldwide, yet current diagnostic practices cannot detect an etiologic pathogen in ~40% of dengue-like illnesses. Metagenomic approaches to pathogen detection, such as viral microarrays and deep sequencing, are promising tools to address emerging and non-diagnosable disease challenges. In this study, we used the Virochip microarray and deep sequencing to characterize the spectrum of viruses present in human sera from 123 Nicaraguan patients presenting with dengue-like symptoms but testing negative for dengue virus. We utilized a barcoding strategy to simultaneously deep sequence multiple serum specimens, generating on average over 1 million reads per sample. We then implemented a stepwise bioinformatic filtering pipeline to remove the majority of human and low-quality sequences to improve the speed and accuracy of subsequent unbiased database searches. By deep sequencing, we were able to detect virus sequence in 37% (45/123) of previously negative cases. These included 13 cases with Human Herpesvirus 6 sequences. Other samples contained sequences with similarity to sequences from viruses in the Herpesviridae, Flaviviridae, Circoviridae, Anelloviridae, Asfarviridae, and Parvoviridae families. In some cases, the putative viral sequences were virtually identical to known viruses, and in others they diverged, suggesting that they may derive from novel viruses. These results demonstrate the utility of unbiased metagenomic approaches in the detection of known and divergent viruses in the study of tropical febrile illness.
ISSN:1935-2727
1935-2735
DOI:10.1371/journal.pntd.0001485