On the evaluation of the gravity effects of polyhedral bodies and a consistent treatment of related singularities
We show that the singularities which can affect the computation of the gravity effects (potential, gravity and tensor gradient fields) can be systematically addressed by invoking distribution theory and suitable formulas of differential calculus. Thus, differently from previous contributions on the...
Gespeichert in:
Veröffentlicht in: | Journal of geodesy 2013-03, Vol.87 (3), p.239-252 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We show that the singularities which can affect the computation of the gravity effects (potential, gravity and tensor gradient fields) can be systematically addressed by invoking distribution theory and suitable formulas of differential calculus. Thus, differently from previous contributions on the subject, the use of a-posteriori corrections of the formulas derived in absence of singularities can be ruled out. The general approach presented in the paper is further specialized to the case of polyhedral bodies and detailed for a rectangular prism having a constant mass density. With reference to this last case, we derive novel expressions for the related gravitational field, as well as for its first and second derivative, at an observation point coincident with a prism vertex and show that they turn out to be more compact than the ones reported in the specialized literature. |
---|---|
ISSN: | 0949-7714 1432-1394 |
DOI: | 10.1007/s00190-012-0592-1 |