Semi-Static Hedging Based on a Generalized Reflection Principle on a Multi Dimensional Brownian Motion

On a multi-assets Black-Scholes economy, we introduce a class of barrier options, where the knock-out boundary is a cone. In this model we apply a generalized reflection principle in a context of the finite reflection group acting on a Euclidean space to give a valuation formula and the semi-static...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Asia-Pacific financial markets 2013-03, Vol.20 (1), p.71-81
Hauptverfasser: Imamura, Yuri, Takagi, Katsuya
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:On a multi-assets Black-Scholes economy, we introduce a class of barrier options, where the knock-out boundary is a cone. In this model we apply a generalized reflection principle in a context of the finite reflection group acting on a Euclidean space to give a valuation formula and the semi-static hedge. The result is a multi-dimensional generalization of the put-call symmetry by Bowie and Carr (Risk (7):45–49, 1994 ), Carr and Chou (Risk 10(9):139–145, 1997 ), etc. The important implication of our result is that with a given volatility matrix structure of the multi-assets, one can design a multi-barrier option and a system of plain options, with the latter the former is statically hedged.
ISSN:1387-2834
1573-6946
DOI:10.1007/s10690-012-9159-7