Zero-Error Communication via Quantum Channels, Noncommutative Graphs, and a Quantum Lovász Number

We study the quantum channel version of Shannon's zero-error capacity problem. Motivated by recent progress on this question, we propose to consider a certain subspace of operators (so-called operator systems) as the quantum generalization of the adjacency matrix, in terms of which the zero-err...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on information theory 2013-02, Vol.59 (2), p.1164-1174
Hauptverfasser: Runyao Duan, Severini, S., Winter, A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We study the quantum channel version of Shannon's zero-error capacity problem. Motivated by recent progress on this question, we propose to consider a certain subspace of operators (so-called operator systems) as the quantum generalization of the adjacency matrix, in terms of which the zero-error capacity of a quantum channel, as well as the quantum and entanglement-assisted zero-error capacities can be formulated, and for which we show some new basic properties. Most importantly, we define a quantum version of Lovász' famous ϑ function on general operator systems, as the norm-completion (or stabilization) of a "naive" generalization of ϑ. We go on to show that this function upper bounds the number of entanglement-assisted zero-error messages, that it is given by a semidefinite program, whose dual we write down explicitly, and that it is multiplicative with respect to the tensor product of operator systems (corresponding to the tensor product of channels). We explore various other properties of the new quantity, which reduces to Lovász' original ϑ in the classical case, give several applications, and propose to study the operator systems associated with channels as "noncommutative graphs," using the language of Hilbert modules.
ISSN:0018-9448
1557-9654
DOI:10.1109/TIT.2012.2221677