Twinning-Induced Plasticity Aided High Ductile Duplex Stainless Steel
Extended ductility over 70 pct was realized in duplex stainless steel by implementing twinning-induced plasticity (TWIP). The steel also exhibited the tensile strength over 800 MPa. The steel chemistry was designed so that the stacking fault energy of austenite was high enough to induce TWIP during...
Gespeichert in:
Veröffentlicht in: | Metallurgical and materials transactions. A, Physical metallurgy and materials science Physical metallurgy and materials science, 2013-02, Vol.44 (2), p.597-601 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Extended ductility over 70 pct was realized in duplex stainless steel by implementing twinning-induced plasticity (TWIP). The steel also exhibited the tensile strength over 800 MPa. The steel chemistry was designed so that the stacking fault energy of austenite was high enough to induce TWIP during deformation. After the initial decrease, the strain hardening rate increased at high tensile strains above ~30 pct. The microstructures of austenite at such high strains were manifested by well-developed primary twins and nanotwins between them, which effectively block dislocation motion. This observation ensures that extended ductility and high strength of a newly designed duplex stainless steel are originated from TWIP in austenite. |
---|---|
ISSN: | 1073-5623 1543-1940 |
DOI: | 10.1007/s11661-012-1579-5 |