Strong stabilization of controlled vibrating systems
This paper deals with feedback stabilization of second order equations of the form ytt + A0y + u (t) B0y (t) = 0, t ∈ [0, +∞[, where A0 is a densely defined positive selfadjoint linear operator on a real Hilbert space H, with compact inverse and B0 is a linear map in diagonal form. It is proved here...
Gespeichert in:
Veröffentlicht in: | ESAIM. Control, optimisation and calculus of variations optimisation and calculus of variations, 2011-10, Vol.17 (4), p.1144-1157 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | This paper deals with feedback stabilization of second order equations of the form ytt + A0y + u (t) B0y (t) = 0, t ∈ [0, +∞[, where A0 is a densely defined positive selfadjoint linear operator on a real Hilbert space H, with compact inverse and B0 is a linear map in diagonal form. It is proved here that the classical sufficient ad-condition of Jurdjevic-Quinn and Ball-Slemrod with the feedback control u = ⟨yt, B0y⟩H implies the strong stabilization. This result is derived from a general compactness theorem for semigroup with compact resolvent and solves several open problems. |
---|---|
ISSN: | 1292-8119 1262-3377 |
DOI: | 10.1051/cocv/2010041 |