Beneficial effects of the active principle component of Korean cabbage kimchi via increasing nitric oxide production and suppressing inflammation in the aorta of apoE knockout mice

The present study investigated the effects of 3′-(4′-hydroxyl-3′,5′-dimethoxyphenyl)propionic acid (HDMPPA), the active principle compound of kimchi, on vascular damage in the experimental atherosclerotic animal. HDMPPA was administrated by an intraperitoneal injection of 10 mg/kg per d for 8 weeks...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:British journal of nutrition 2013-01, Vol.109 (1), p.17-24
Hauptverfasser: Noh, Jeong Sook, Choi, Yung Hyun, Song, Yeong Ok
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The present study investigated the effects of 3′-(4′-hydroxyl-3′,5′-dimethoxyphenyl)propionic acid (HDMPPA), the active principle compound of kimchi, on vascular damage in the experimental atherosclerotic animal. HDMPPA was administrated by an intraperitoneal injection of 10 mg/kg per d for 8 weeks to apoE knockout (KO) mice with an atherogenic diet containing 1 % cholesterol, and its effects were compared with vehicle-treated control mice. HDMPPA increased NO content in the aorta, accompanied by a decrease in reactive oxygen species (ROS) concentration. Furthermore, in the HDMPPA-treated group, aortic endothelial NO synthase (eNOS) expression was up-regulated compared with the control group. These results suggested that HDMPPA could maintain NO bioavailability through an increasing eNOS expression and preventing NO degradation by ROS. Furthermore, HDMPPA treatment in apoE KO mice inhibited eNOS uncoupling through an increase in vascular tetrahydrobiopterin content and a decrease in serum asymmetric dimethylarginine levels. Moreover, HDMPPA ameliorates inflammatory-related protein expression in the aorta of apoE KO mice. Therefore, the present study suggests that HDMPPA, the active compound of kimchi, a Korean functional food, may exert its vascular protective effect through the preservation of NO bioavailability and suppression of the inflammatory response.
ISSN:0007-1145
1475-2662
DOI:10.1017/S0007114512000633