A multispecies tree ring reconstruction of Potomac River streamflow (950-2001)

Mean May–September Potomac River streamflow was reconstructed from 950–2001 using a network of tree ring chronologies (n = 27) representing multiple species. We chose a nested principal components reconstruction method to maximize use of available chronologies backward in time. Explained variance du...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Water resources research 2011-05, Vol.47 (5), p.n/a
Hauptverfasser: Maxwell, R. Stockton, Hessl, Amy E., Cook, Edward R., Pederson, Neil
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Mean May–September Potomac River streamflow was reconstructed from 950–2001 using a network of tree ring chronologies (n = 27) representing multiple species. We chose a nested principal components reconstruction method to maximize use of available chronologies backward in time. Explained variance during the period of calibration ranged from 20% to 53% depending on the number and species of chronologies available in each 25 year time step. The model was verified by two goodness of fit tests, the coefficient of efficiency (CE) and the reduction of error statistic (RE). The RE and CE never fell below zero, suggesting the model had explanatory power over the entire period of reconstruction. Beta weights indicated a loss of explained variance during the 1550–1700 period that we hypothesize was caused by the reduction in total number of predictor chronologies and loss of important predictor species. Thus, the reconstruction is strongest from 1700–2001. Frequency, intensity, and duration of drought and pluvial events were examined to aid water resource managers. We found that the instrumental period did not represent adequately the full range of annual to multidecadal variability present in the reconstruction. Our reconstruction of mean May–September Potomac River streamflow was a significant improvement over the Cook and Jacoby (1983) reconstruction because it expanded the seasonal window, lengthened the record by 780 years, and better replicated the mean and variance of the instrumental record. By capitalizing on variable phenologies and tree growth responses to climate, multispecies reconstructions may provide significantly more information about past hydroclimate, especially in regions with low aridity and high tree species diversity. Key Points Millennial length reconstruction of Potomac River Streamflow Instrumental record does represent the past millenium Improvement upon the previous reconstruction
ISSN:0043-1397
1944-7973
DOI:10.1029/2010WR010019