Regional-scale phenology modeling based on meteorological records and remote sensing observations
Changes of vegetation phenology in response to climate change in the temperate forests have been well documented recently and have important implications on the regional and global carbon and water cycles. Predicting the impact of changing phenology on terrestrial ecosystems requires an accurate phe...
Gespeichert in:
Veröffentlicht in: | Journal of Geophysical Research: Biogeosciences 2012-09, Vol.117 (G3), p.n/a |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Changes of vegetation phenology in response to climate change in the temperate forests have been well documented recently and have important implications on the regional and global carbon and water cycles. Predicting the impact of changing phenology on terrestrial ecosystems requires an accurate phenology model. Although species‐level phenology models have been tested using a small number of vegetation species, they are rarely examined at the regional level. In this study, we used remotely sensed phenology and meteorological data to parameterize the species‐level phenology models. We used a remotely sensed vegetation index (Two‐band Enhanced Vegetation Index, EVI2) derived from the Moderate Resolution Spectroradiometer (MODIS) 8‐day reflectance product from 2000 to 2010 of New England, United States to calculate remotely sensed vegetation phenology (start/end of season, or SOS/EOS). The SOS/EOS and the daily mean air temperature data from weather stations were used to parameterize three budburst models and one senescence model. We compared the relative strengths of the models to predict vegetation phenology and selected the best model to reconstruct the “landscape phenology” in New England from year 1960 to 2010. Of the three budburst models tested, the spring warming model showed the best performance with an averaged Root Mean Square Deviation (RMSD) of 4.59 days. The Akaike Information Criterion supported the spring warming model in all the weather stations. For senescence modeling, the Delpierre model was better than a null model (the averaged phenology of each weather station, averaged model efficiency = 0.33) and has a RMSD of 8.05 days. A retrospective analysis using the spring warming model suggests a statistically significant advance of SOS in New England from 1960 to 2010 averaged as 0.143 days per year (p = 0.015). EOS calculated using the Delpierre model and growing season length showed no statistically significant advance or delay between 1960 and 2010 in this region. These results suggest the applicability of species‐level phenology models at the regional level (and potentially terrestrial biosphere models) and the feasibility of using these models in reconstructing and predicting vegetation phenology.
Key Points
Phenology models are capable of estimating plant phenology at regional scale
The spring warming model is better than other tested budburst models
The start of season in New England advanced significantly between 1960 and 2010 |
---|---|
ISSN: | 0148-0227 2169-8953 2156-2202 2169-8961 |
DOI: | 10.1029/2012JG001977 |