The Kripke schema in metric topology

A form of Kripke's schema turns out to be equivalent to each of the following two statements from metric topology: every open subspace of a separable metric space is separable; every open subset of a separable metric space is a countable union of open balls. Thus Kripke's schema serves as...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematical logic quarterly 2012-11, Vol.58 (6), p.498-501
Hauptverfasser: Lubarsky, Robert, Richman, Fred, Schuster, Peter
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A form of Kripke's schema turns out to be equivalent to each of the following two statements from metric topology: every open subspace of a separable metric space is separable; every open subset of a separable metric space is a countable union of open balls. Thus Kripke's schema serves as a point of reference for classifying theorems of classical mathematics within Bishop‐style constructive reverse mathematics.
ISSN:0942-5616
1521-3870
DOI:10.1002/malq.201200018