The Kripke schema in metric topology
A form of Kripke's schema turns out to be equivalent to each of the following two statements from metric topology: every open subspace of a separable metric space is separable; every open subset of a separable metric space is a countable union of open balls. Thus Kripke's schema serves as...
Gespeichert in:
Veröffentlicht in: | Mathematical logic quarterly 2012-11, Vol.58 (6), p.498-501 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | A form of Kripke's schema turns out to be equivalent to each of the following two statements from metric topology: every open subspace of a separable metric space is separable; every open subset of a separable metric space is a countable union of open balls. Thus Kripke's schema serves as a point of reference for classifying theorems of classical mathematics within Bishop‐style constructive reverse mathematics. |
---|---|
ISSN: | 0942-5616 1521-3870 |
DOI: | 10.1002/malq.201200018 |