Optimal Stochastic Approximation Algorithms for Strongly Convex Stochastic Composite Optimization I: A Generic Algorithmic Framework

In this paper we present a generic algorithmic framework, namely, the accelerated stochastic approximation (AC-SA) algorithm, for solving strongly convex stochastic composite optimization (SCO) problems. While the classical stochastic approximation algorithms are asymptotically optimal for solving d...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:SIAM journal on optimization 2012-01, Vol.22 (4), p.1469-1492
Hauptverfasser: Ghadimi, Saeed, Lan, Guanghui
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper we present a generic algorithmic framework, namely, the accelerated stochastic approximation (AC-SA) algorithm, for solving strongly convex stochastic composite optimization (SCO) problems. While the classical stochastic approximation algorithms are asymptotically optimal for solving differentiable and strongly convex problems, the AC-SA algorithm, when employed with proper stepsize policies, can achieve optimal or nearly optimal rates of convergence for solving different classes of SCO problems during a given number of iterations. Moreover, we investigate these AC-SA algorithms in more detail, such as by establishing the large-deviation results associated with the convergence rates and introducing an efficient validation procedure to check the accuracy of the generated solutions. [PUBLICATION ABSTRACT]
ISSN:1052-6234
1095-7189
DOI:10.1137/110848864