Nuclear IFI16 induction of IRF-3 signaling during herpesviral infection and degradation of IFI16 by the viral ICP0 protein

Innate sensing of microbial components is well documented to occur at many cellular sites, including at the cell surface, in the cytosol, and in intracellular vesicles, but there is limited evidence of nuclear innate signaling. In this study we have defined the mechanisms of interferon regulatory fa...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the National Academy of Sciences - PNAS 2012-10, Vol.109 (44), p.E3008-E3017
Hauptverfasser: Orzalli, Megan H, DeLuca, Neal A, Knipe, David M
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Innate sensing of microbial components is well documented to occur at many cellular sites, including at the cell surface, in the cytosol, and in intracellular vesicles, but there is limited evidence of nuclear innate signaling. In this study we have defined the mechanisms of interferon regulatory factor-3 (IRF-3) signaling in primary human foreskin fibroblasts (HFF) infected with herpes simplex virus 1 (HSV-1) in the absence of viral gene expression. We found that the interferon inducible protein 16 (IFI16) DNA sensor, which is required for induction of IRF-3 signaling in these cells, is nuclear, and its localization does not change detectably upon HSV-1 d 109 infection and induction of IRF-3 signaling. Consistent with the IFI16 sensor being nuclear, conditions that block viral DNA release from incoming capsids inhibit IRF-3 signaling. An unknown factor must be exported from the nucleus to activate IRF-3 through cytoplasmic STING, which is required for IRF-3 activation and signaling. However, when the viral ICP0 protein is expressed in the nucleus, it causes the nuclear relocalization and degradation of IFI16, inhibiting IRF-3 signaling. Therefore, HSV-1 infection is sensed in HFF by nuclear IFI16 upon release of encapsidated viral DNA into the nucleus, and the viral nuclear ICP0 protein can inhibit the process by targeting IFI16 for degradation. Together these results define a pathway for nuclear innate sensing of HSV DNA by IFI16 in infected HFF and document a mechanism by which a virus can block this nuclear innate response.
ISSN:0027-8424
1091-6490
DOI:10.1073/pnas.1211302109