Analysis of cloud layer structure in Shouxian, China using RS92 radiosonde aided by 95 GHz cloud radar

The Atmospheric Radiation Measurement Mobile Facility (AMF) was deployed in Shouxian, Anhui Province, China from 14 May to 28 December 2008. Radiosonde data obtained during the AMF campaign are used to analyze cloud vertical structure over this area by taking advantage of the first direct measuremen...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of Geophysical Research: Atmospheres 2010-04, Vol.115 (D7), p.n/a
Hauptverfasser: Zhang, Jinqiang, Chen, Hongbin, Li, Zhanqing, Fan, Xuehua, Peng, Liang, Yu, Yu, Cribb, Maureen
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The Atmospheric Radiation Measurement Mobile Facility (AMF) was deployed in Shouxian, Anhui Province, China from 14 May to 28 December 2008. Radiosonde data obtained during the AMF campaign are used to analyze cloud vertical structure over this area by taking advantage of the first direct measurements of cloud vertical layers from the 95 GHz radar. Single‐layer, two‐layer, and three‐layer clouds account for 28.0%, 25.8%, and 13.9% of all cloud configurations, respectively. Low, middle, high and deep convective clouds account for 20.1%, 19.3%, 59.5%, and 1.1% of all clouds observed at the site, respectively. The average cloud base height, cloud top height, and cloud thickness for all clouds are 5912, 7639, and 1727 m, respectively. Maximum cloud top height and cloud thickness occurred at 1330 local standard time (LST) for single‐layer clouds and the uppermost layer of multiple layers of cloud. For lower layer clouds in multiple‐layer cloud systems, maximum cloud top height and cloud thickness occurred at 1930 LST. Diurnal variations in the thickness of upper level clouds are larger than those of lower level clouds. Multilayer clouds occurred more frequently in the summer. The absolute differences in cloud base heights from radiosonde and micropulse lidar/ceilometer comparisons are less than 500 m for 77.1%/68.4% of the cases analyzed.
ISSN:0148-0227
2169-897X
2156-2202
2169-8996
DOI:10.1029/2010JD014030