Wavelet networks for sensor signal classification in flank wear assessment

It is known that the force and vibration sensor signals in a turning process are sensitive to the gradually increasing flank wear. Based on this fact, this paper investigates a flank wear assessment technique in turning through force and vibration signals. Mainly to reduce the computational burden a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of intelligent manufacturing 1998-08, Vol.9 (4), p.315
Hauptverfasser: Pittner, Stefan, Kamarthi, Sagar V, Gao, Qinglan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:It is known that the force and vibration sensor signals in a turning process are sensitive to the gradually increasing flank wear. Based on this fact, this paper investigates a flank wear assessment technique in turning through force and vibration signals. Mainly to reduce the computational burden associated with the existing sensor-based methods for flank wear assessment, a so-called wavelet network is investigated. The basic idea in this new method is to optimize simultaneously the wavelet parameters (that represent signal features) and the signal-interpretation parameters (that are equivalent to neural network weights) to eliminate the feature extraction phase without increasing the computational complexity of the neural network. A neural network architecture similar to a standard one-hidden-layer feedforward neural network is used to relate sensor signal measurements to flank wear classes. A novel training algorithm for such a network is developed. The performance of this n ew method is compared with a previously developed flank wear assessment method which uses a separate feature extraction step. The proposed wavelet network can also be useful for developing signal interpretation schemes for manufacturing process monitoring, critical component monitoring, and product quality monitoring.[PUBLICATION ABSTRACT]
ISSN:0956-5515
1572-8145
DOI:10.1023/A:1008970608121