Wavelet networks for sensor signal classification in flank wear assessment
It is known that the force and vibration sensor signals in a turning process are sensitive to the gradually increasing flank wear. Based on this fact, this paper investigates a flank wear assessment technique in turning through force and vibration signals. Mainly to reduce the computational burden a...
Gespeichert in:
Veröffentlicht in: | Journal of intelligent manufacturing 1998-08, Vol.9 (4), p.315 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | It is known that the force and vibration sensor signals in a turning process are sensitive to the gradually increasing flank wear. Based on this fact, this paper investigates a flank wear assessment technique in turning through force and vibration signals. Mainly to reduce the computational burden associated with the existing sensor-based methods for flank wear assessment, a so-called wavelet network is investigated. The basic idea in this new method is to optimize simultaneously the wavelet parameters (that represent signal features) and the signal-interpretation parameters (that are equivalent to neural network weights) to eliminate the feature extraction phase without increasing the computational complexity of the neural network. A neural network architecture similar to a standard one-hidden-layer feedforward neural network is used to relate sensor signal measurements to flank wear classes. A novel training algorithm for such a network is developed. The performance of this n ew method is compared with a previously developed flank wear assessment method which uses a separate feature extraction step. The proposed wavelet network can also be useful for developing signal interpretation schemes for manufacturing process monitoring, critical component monitoring, and product quality monitoring.[PUBLICATION ABSTRACT] |
---|---|
ISSN: | 0956-5515 1572-8145 |
DOI: | 10.1023/A:1008970608121 |