Time-Variant Decoding of Convolutional Network Codes

In this paper, a time-variant decoding model of a convolutional network code (CNC) is proposed. New necessary and sufficient conditions are established for the decodability of a CNC at a node r with delay L. They only involve the first L+1 terms in the power series expansion of the global encoding k...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE communications letters 2012-10, Vol.16 (10), p.1656-1659
Hauptverfasser: Wangmei Guo, Ning Cai, Sun, Q. T.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper, a time-variant decoding model of a convolutional network code (CNC) is proposed. New necessary and sufficient conditions are established for the decodability of a CNC at a node r with delay L. They only involve the first L+1 terms in the power series expansion of the global encoding kernel matrix at r. Concomitantly, a time-variant decoding algorithm is proposed with a decoding matrix over the base symbol field. The present time-variant decoding model only deals with partial information of the global encoding kernel matrix, and hence potentially makes CNCs applicable in a decentralized manner.
ISSN:1089-7798
1558-2558
DOI:10.1109/LCOMM.2012.080312.120789