Probabilistic Multi-Task Learning for Visual Saliency Estimation in Video

In this paper, we present a probabilistic multi-task learning approach for visual saliency estimation in video. In our approach, the problem of visual saliency estimation is modeled by simultaneously considering the stimulus-driven and task-related factors in a probabilistic framework. In this frame...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of computer vision 2010-11, Vol.90 (2), p.150-165
Hauptverfasser: Li, Jia, Tian, Yonghong, Huang, Tiejun, Gao, Wen
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper, we present a probabilistic multi-task learning approach for visual saliency estimation in video. In our approach, the problem of visual saliency estimation is modeled by simultaneously considering the stimulus-driven and task-related factors in a probabilistic framework. In this framework, a stimulus-driven component simulates the low-level processes in human vision system using multi-scale wavelet decomposition and unbiased feature competition; while a task-related component simulates the high-level processes to bias the competition of the input features. Different from existing approaches, we propose a multi-task learning algorithm to learn the task-related “stimulus-saliency” mapping functions for each scene. The algorithm also learns various fusion strategies, which are used to integrate the stimulus-driven and task-related components to obtain the visual saliency. Extensive experiments were carried out on two public eye-fixation datasets and one regional saliency dataset. Experimental results show that our approach outperforms eight state-of-the-art approaches remarkably.
ISSN:0920-5691
1573-1405
DOI:10.1007/s11263-010-0354-6