Study of InAs/GaAs quantum dots grown by MOVPE under the safer growth conditions
InAs quantum dots (QDs) have been formed on GaAs (001) substrate by metal-organic vapor phase epitaxy (MOVPE) under the safer growth conditions: using tertiarybutylarsine (TBA) to replace AsH^sub 3^ as the arsenic source and replacing hydrogen by pure nitrogen as the carrier gas. Effects of growth c...
Gespeichert in:
Veröffentlicht in: | Journal of nanoparticle research : an interdisciplinary forum for nanoscale science and technology 2007-10, Vol.9 (5), p.877-884 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | InAs quantum dots (QDs) have been formed on GaAs (001) substrate by metal-organic vapor phase epitaxy (MOVPE) under the safer growth conditions: using tertiarybutylarsine (TBA) to replace AsH^sub 3^ as the arsenic source and replacing hydrogen by pure nitrogen as the carrier gas. Effects of growth conditions on the QD formation have been investigated. It is observed that the wetting layer is stabilized with some material being transferred to form the QDs due to the strain relaxation process during the QD formation. Dot size dispersion becomes broader when the post-growth interruption is more than 20 s. Compared with normal one-step grown QDs, dot density increases greatly by 213% after employing two-step deposition for QD growth. This is explained by considering the indium-flux-dependent nucleation density at step 1 and kinetically self-limiting growth at step 2. The two photoluminescence (PL) emission peaks, 1.203 μm and 1.094 μm, from the two-step grown QDs are attributed to E1-HH1 and E1-LH1 transitions of the QDs, respectively. The measured results agree well with those received by an 8 k·p theoretical calculation. The narrow PL linewidth of ~50 nm shows high quality of the QDs. This paves the way to develop safer MOVPE process, using TBA/N^sub 2^ instead of AsH^sub 3^/H^sub 2^, to grow QDs for device application.[PUBLICATION ABSTRACT] |
---|---|
ISSN: | 1388-0764 1572-896X |
DOI: | 10.1007/s11051-006-9161-y |