Nanoparticles for dewetting suppression of thin polymer films used in chemical sensors
Addition of fullerenes (C^sub 60^ or buckyballs) to a linear polymer has been found to eliminate dewetting when a thin (50 nm) film is exposed to solvent vapor. Based on neutron reflectivity measurements, it is found that the fullerenes form a coherent layer approximately 2 nm thick at the substrate...
Gespeichert in:
Veröffentlicht in: | Journal of nanoparticle research : an interdisciplinary forum for nanoscale science and technology 2007-10, Vol.9 (5), p.753-763 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Addition of fullerenes (C^sub 60^ or buckyballs) to a linear polymer has been found to eliminate dewetting when a thin (50 nm) film is exposed to solvent vapor. Based on neutron reflectivity measurements, it is found that the fullerenes form a coherent layer approximately 2 nm thick at the substrate - polymer film interface during the spin-coating process. The thickness and relative fullerene concentration (29 vol%) is not altered during solvent vapor annealing and it is thought this layer forms a solid-like buffer shielding the adverse van der Waals forces promoted by the underlying substrate. Several polymer films produced by spin- or spray-coating were tested on both silicon wafers and live surface acoustic wave sensors demonstrating fullerenes stabilize many different polymer types, prepared by different procedures and on various surfaces. Further, the fullerenes drastically improve sensor performance since dewetted films produce a sensor that is effectively inoperable.[PUBLICATION ABSTRACT] |
---|---|
ISSN: | 1388-0764 1572-896X |
DOI: | 10.1007/s11051-006-9118-1 |