Synthesis of hydrophilic copper nanoparticles: effect of reaction temperature

Synthesis of hydrophilic copper nanoparticles with an additional coating of an hydrophilic polymer has been carried out by use of hydrazine hydrate (HH) and sodium formaldehyde sulfoxylate (SFS) in aqueous medium. The effect of temperature on nanoparticles when synthesized in aqueous medium has been...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of nanoparticle research : an interdisciplinary forum for nanoscale science and technology 2009-05, Vol.11 (4), p.793-799
Hauptverfasser: Khanna, P. K., More, Priyesh, Jawalkar, Jagdish, Patil, Yogesh, Koteswar Rao, N.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 799
container_issue 4
container_start_page 793
container_title Journal of nanoparticle research : an interdisciplinary forum for nanoscale science and technology
container_volume 11
creator Khanna, P. K.
More, Priyesh
Jawalkar, Jagdish
Patil, Yogesh
Koteswar Rao, N.
description Synthesis of hydrophilic copper nanoparticles with an additional coating of an hydrophilic polymer has been carried out by use of hydrazine hydrate (HH) and sodium formaldehyde sulfoxylate (SFS) in aqueous medium. The effect of temperature on nanoparticles when synthesized in aqueous medium has been studied. It is observed that an ideal temperature ranges some where between 70 and 80 °C. Nearly phase-pure nanocopper can be obtained when both sodium succinate and polyvinyl alcohol (PVA) are used together to provide double capping in aqueous medium. It is observed that the surface plasmon resonance (SPR) phenomena is sensitive to experimental conditions and handling of the nanoparticles. X-ray diffraction measurements (XRD) revealed a broad pattern for the fcc crystal structure of copper metal. The particle diameter by use of Scherrer’s equation was calculated to be about 43 nm. Thermal analysis (TGA) revealed ~10–60% weight loss due to the presence of surfactants. Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) showed that there is clustering of spherical particles in dry state.
doi_str_mv 10.1007/s11051-008-9441-9
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1112753834</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2791861331</sourcerecordid><originalsourceid>FETCH-LOGICAL-c382t-c21705376604e2c748fbf4347f764a049822df7de44be24f58a05fb28792de123</originalsourceid><addsrcrecordid>eNp1kD1PwzAQhi0EEqXwA9giMRt8jhM7bKjiSypiACQ2y3XONFUbB9sZ-u9xFQYWprvhed87PYRcArsGxuRNBGAVUMYUbYQA2hyRGVSSU9XUn8d5L5WiTNbilJzFuGEMat7wGXl52_dpjbGLhXfFet8GP6y7bWcL64cBQ9Gb3g8mpM5uMd4W6BzadGADGps63xcJdxk0aQx4Tk6c2Ua8-J1z8vFw_754osvXx-fF3ZLaUvFELQfJqlLWNRPIrRTKrZwohXT5QcNEozhvnWxRiBVy4SplWOVWXMmGtwi8nJOrqXcI_nvEmPTGj6HPJzUAcFmVqhSZgomywccY0OkhdDsT9hqYPljTkzWdremDNd3kDJ8yMbP9F4Y_zf-GfgAAsm-H</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1112753834</pqid></control><display><type>article</type><title>Synthesis of hydrophilic copper nanoparticles: effect of reaction temperature</title><source>SpringerLink Journals</source><creator>Khanna, P. K. ; More, Priyesh ; Jawalkar, Jagdish ; Patil, Yogesh ; Koteswar Rao, N.</creator><creatorcontrib>Khanna, P. K. ; More, Priyesh ; Jawalkar, Jagdish ; Patil, Yogesh ; Koteswar Rao, N.</creatorcontrib><description>Synthesis of hydrophilic copper nanoparticles with an additional coating of an hydrophilic polymer has been carried out by use of hydrazine hydrate (HH) and sodium formaldehyde sulfoxylate (SFS) in aqueous medium. The effect of temperature on nanoparticles when synthesized in aqueous medium has been studied. It is observed that an ideal temperature ranges some where between 70 and 80 °C. Nearly phase-pure nanocopper can be obtained when both sodium succinate and polyvinyl alcohol (PVA) are used together to provide double capping in aqueous medium. It is observed that the surface plasmon resonance (SPR) phenomena is sensitive to experimental conditions and handling of the nanoparticles. X-ray diffraction measurements (XRD) revealed a broad pattern for the fcc crystal structure of copper metal. The particle diameter by use of Scherrer’s equation was calculated to be about 43 nm. Thermal analysis (TGA) revealed ~10–60% weight loss due to the presence of surfactants. Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) showed that there is clustering of spherical particles in dry state.</description><identifier>ISSN: 1388-0764</identifier><identifier>EISSN: 1572-896X</identifier><identifier>DOI: 10.1007/s11051-008-9441-9</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Characterization and Evaluation of Materials ; Chemistry and Materials Science ; Copper ; Inorganic Chemistry ; Lasers ; Materials Science ; Microbiology ; Nanoparticles ; Nanotechnology ; Optical Devices ; Optics ; Photonics ; Physical Chemistry ; Polymers ; Polyvinyl alcohol ; Research Paper ; Sodium ; Thermal analysis ; X-ray diffraction</subject><ispartof>Journal of nanoparticle research : an interdisciplinary forum for nanoscale science and technology, 2009-05, Vol.11 (4), p.793-799</ispartof><rights>Springer Science+Business Media B.V. 2008</rights><rights>Springer Science+Business Media B.V. 2009</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c382t-c21705376604e2c748fbf4347f764a049822df7de44be24f58a05fb28792de123</citedby><cites>FETCH-LOGICAL-c382t-c21705376604e2c748fbf4347f764a049822df7de44be24f58a05fb28792de123</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11051-008-9441-9$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11051-008-9441-9$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Khanna, P. K.</creatorcontrib><creatorcontrib>More, Priyesh</creatorcontrib><creatorcontrib>Jawalkar, Jagdish</creatorcontrib><creatorcontrib>Patil, Yogesh</creatorcontrib><creatorcontrib>Koteswar Rao, N.</creatorcontrib><title>Synthesis of hydrophilic copper nanoparticles: effect of reaction temperature</title><title>Journal of nanoparticle research : an interdisciplinary forum for nanoscale science and technology</title><addtitle>J Nanopart Res</addtitle><description>Synthesis of hydrophilic copper nanoparticles with an additional coating of an hydrophilic polymer has been carried out by use of hydrazine hydrate (HH) and sodium formaldehyde sulfoxylate (SFS) in aqueous medium. The effect of temperature on nanoparticles when synthesized in aqueous medium has been studied. It is observed that an ideal temperature ranges some where between 70 and 80 °C. Nearly phase-pure nanocopper can be obtained when both sodium succinate and polyvinyl alcohol (PVA) are used together to provide double capping in aqueous medium. It is observed that the surface plasmon resonance (SPR) phenomena is sensitive to experimental conditions and handling of the nanoparticles. X-ray diffraction measurements (XRD) revealed a broad pattern for the fcc crystal structure of copper metal. The particle diameter by use of Scherrer’s equation was calculated to be about 43 nm. Thermal analysis (TGA) revealed ~10–60% weight loss due to the presence of surfactants. Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) showed that there is clustering of spherical particles in dry state.</description><subject>Characterization and Evaluation of Materials</subject><subject>Chemistry and Materials Science</subject><subject>Copper</subject><subject>Inorganic Chemistry</subject><subject>Lasers</subject><subject>Materials Science</subject><subject>Microbiology</subject><subject>Nanoparticles</subject><subject>Nanotechnology</subject><subject>Optical Devices</subject><subject>Optics</subject><subject>Photonics</subject><subject>Physical Chemistry</subject><subject>Polymers</subject><subject>Polyvinyl alcohol</subject><subject>Research Paper</subject><subject>Sodium</subject><subject>Thermal analysis</subject><subject>X-ray diffraction</subject><issn>1388-0764</issn><issn>1572-896X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp1kD1PwzAQhi0EEqXwA9giMRt8jhM7bKjiSypiACQ2y3XONFUbB9sZ-u9xFQYWprvhed87PYRcArsGxuRNBGAVUMYUbYQA2hyRGVSSU9XUn8d5L5WiTNbilJzFuGEMat7wGXl52_dpjbGLhXfFet8GP6y7bWcL64cBQ9Gb3g8mpM5uMd4W6BzadGADGps63xcJdxk0aQx4Tk6c2Ua8-J1z8vFw_754osvXx-fF3ZLaUvFELQfJqlLWNRPIrRTKrZwohXT5QcNEozhvnWxRiBVy4SplWOVWXMmGtwi8nJOrqXcI_nvEmPTGj6HPJzUAcFmVqhSZgomywccY0OkhdDsT9hqYPljTkzWdremDNd3kDJ8yMbP9F4Y_zf-GfgAAsm-H</recordid><startdate>20090501</startdate><enddate>20090501</enddate><creator>Khanna, P. K.</creator><creator>More, Priyesh</creator><creator>Jawalkar, Jagdish</creator><creator>Patil, Yogesh</creator><creator>Koteswar Rao, N.</creator><general>Springer Netherlands</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QO</scope><scope>7SR</scope><scope>7TB</scope><scope>7U5</scope><scope>7U7</scope><scope>7X7</scope><scope>7XB</scope><scope>8AO</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>F28</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>K9.</scope><scope>KB.</scope><scope>L6V</scope><scope>L7M</scope><scope>LK8</scope><scope>M0S</scope><scope>M7P</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope></search><sort><creationdate>20090501</creationdate><title>Synthesis of hydrophilic copper nanoparticles: effect of reaction temperature</title><author>Khanna, P. K. ; More, Priyesh ; Jawalkar, Jagdish ; Patil, Yogesh ; Koteswar Rao, N.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c382t-c21705376604e2c748fbf4347f764a049822df7de44be24f58a05fb28792de123</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Characterization and Evaluation of Materials</topic><topic>Chemistry and Materials Science</topic><topic>Copper</topic><topic>Inorganic Chemistry</topic><topic>Lasers</topic><topic>Materials Science</topic><topic>Microbiology</topic><topic>Nanoparticles</topic><topic>Nanotechnology</topic><topic>Optical Devices</topic><topic>Optics</topic><topic>Photonics</topic><topic>Physical Chemistry</topic><topic>Polymers</topic><topic>Polyvinyl alcohol</topic><topic>Research Paper</topic><topic>Sodium</topic><topic>Thermal analysis</topic><topic>X-ray diffraction</topic><toplevel>online_resources</toplevel><creatorcontrib>Khanna, P. K.</creatorcontrib><creatorcontrib>More, Priyesh</creatorcontrib><creatorcontrib>Jawalkar, Jagdish</creatorcontrib><creatorcontrib>Patil, Yogesh</creatorcontrib><creatorcontrib>Koteswar Rao, N.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Biotechnology Research Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ProQuest Pharma Collection</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><jtitle>Journal of nanoparticle research : an interdisciplinary forum for nanoscale science and technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Khanna, P. K.</au><au>More, Priyesh</au><au>Jawalkar, Jagdish</au><au>Patil, Yogesh</au><au>Koteswar Rao, N.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Synthesis of hydrophilic copper nanoparticles: effect of reaction temperature</atitle><jtitle>Journal of nanoparticle research : an interdisciplinary forum for nanoscale science and technology</jtitle><stitle>J Nanopart Res</stitle><date>2009-05-01</date><risdate>2009</risdate><volume>11</volume><issue>4</issue><spage>793</spage><epage>799</epage><pages>793-799</pages><issn>1388-0764</issn><eissn>1572-896X</eissn><abstract>Synthesis of hydrophilic copper nanoparticles with an additional coating of an hydrophilic polymer has been carried out by use of hydrazine hydrate (HH) and sodium formaldehyde sulfoxylate (SFS) in aqueous medium. The effect of temperature on nanoparticles when synthesized in aqueous medium has been studied. It is observed that an ideal temperature ranges some where between 70 and 80 °C. Nearly phase-pure nanocopper can be obtained when both sodium succinate and polyvinyl alcohol (PVA) are used together to provide double capping in aqueous medium. It is observed that the surface plasmon resonance (SPR) phenomena is sensitive to experimental conditions and handling of the nanoparticles. X-ray diffraction measurements (XRD) revealed a broad pattern for the fcc crystal structure of copper metal. The particle diameter by use of Scherrer’s equation was calculated to be about 43 nm. Thermal analysis (TGA) revealed ~10–60% weight loss due to the presence of surfactants. Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) showed that there is clustering of spherical particles in dry state.</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><doi>10.1007/s11051-008-9441-9</doi><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1388-0764
ispartof Journal of nanoparticle research : an interdisciplinary forum for nanoscale science and technology, 2009-05, Vol.11 (4), p.793-799
issn 1388-0764
1572-896X
language eng
recordid cdi_proquest_journals_1112753834
source SpringerLink Journals
subjects Characterization and Evaluation of Materials
Chemistry and Materials Science
Copper
Inorganic Chemistry
Lasers
Materials Science
Microbiology
Nanoparticles
Nanotechnology
Optical Devices
Optics
Photonics
Physical Chemistry
Polymers
Polyvinyl alcohol
Research Paper
Sodium
Thermal analysis
X-ray diffraction
title Synthesis of hydrophilic copper nanoparticles: effect of reaction temperature
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T10%3A34%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Synthesis%20of%20hydrophilic%20copper%20nanoparticles:%20effect%20of%20reaction%20temperature&rft.jtitle=Journal%20of%20nanoparticle%20research%20:%20an%20interdisciplinary%20forum%20for%20nanoscale%20science%20and%20technology&rft.au=Khanna,%20P.%20K.&rft.date=2009-05-01&rft.volume=11&rft.issue=4&rft.spage=793&rft.epage=799&rft.pages=793-799&rft.issn=1388-0764&rft.eissn=1572-896X&rft_id=info:doi/10.1007/s11051-008-9441-9&rft_dat=%3Cproquest_cross%3E2791861331%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1112753834&rft_id=info:pmid/&rfr_iscdi=true