Synthesis of hydrophilic copper nanoparticles: effect of reaction temperature

Synthesis of hydrophilic copper nanoparticles with an additional coating of an hydrophilic polymer has been carried out by use of hydrazine hydrate (HH) and sodium formaldehyde sulfoxylate (SFS) in aqueous medium. The effect of temperature on nanoparticles when synthesized in aqueous medium has been...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of nanoparticle research : an interdisciplinary forum for nanoscale science and technology 2009-05, Vol.11 (4), p.793-799
Hauptverfasser: Khanna, P. K., More, Priyesh, Jawalkar, Jagdish, Patil, Yogesh, Koteswar Rao, N.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Synthesis of hydrophilic copper nanoparticles with an additional coating of an hydrophilic polymer has been carried out by use of hydrazine hydrate (HH) and sodium formaldehyde sulfoxylate (SFS) in aqueous medium. The effect of temperature on nanoparticles when synthesized in aqueous medium has been studied. It is observed that an ideal temperature ranges some where between 70 and 80 °C. Nearly phase-pure nanocopper can be obtained when both sodium succinate and polyvinyl alcohol (PVA) are used together to provide double capping in aqueous medium. It is observed that the surface plasmon resonance (SPR) phenomena is sensitive to experimental conditions and handling of the nanoparticles. X-ray diffraction measurements (XRD) revealed a broad pattern for the fcc crystal structure of copper metal. The particle diameter by use of Scherrer’s equation was calculated to be about 43 nm. Thermal analysis (TGA) revealed ~10–60% weight loss due to the presence of surfactants. Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) showed that there is clustering of spherical particles in dry state.
ISSN:1388-0764
1572-896X
DOI:10.1007/s11051-008-9441-9