Optimal bandwidth selection for multivariate kernel deconvolution density estimation

Assume we have i.i.d. replications from the mismeasured random vector Y = X + ε , where X and ε are mutually independent. We consider a data-driven bandwidth, based on a cross-validation ideas, for multivariate kernel deconvolution estimator of the density of  X . The proposed data-driven bandwidth...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Test (Madrid, Spain) Spain), 2008-05, Vol.17 (1), p.138-162
Hauptverfasser: Youndjé, Élie, Wells, Martin T.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Assume we have i.i.d. replications from the mismeasured random vector Y = X + ε , where X and ε are mutually independent. We consider a data-driven bandwidth, based on a cross-validation ideas, for multivariate kernel deconvolution estimator of the density of  X . The proposed data-driven bandwidth selection method is shown to be asymptotically optimal. As a by-product of the proof of this result, we show that the average squared error, the integrated squared error, and the mean integrated squared error are asymptotically equivalent error measures.
ISSN:1133-0686
1863-8260
DOI:10.1007/s11749-006-0027-5