Optimal bandwidth selection for multivariate kernel deconvolution density estimation
Assume we have i.i.d. replications from the mismeasured random vector Y = X + ε , where X and ε are mutually independent. We consider a data-driven bandwidth, based on a cross-validation ideas, for multivariate kernel deconvolution estimator of the density of X . The proposed data-driven bandwidth...
Gespeichert in:
Veröffentlicht in: | Test (Madrid, Spain) Spain), 2008-05, Vol.17 (1), p.138-162 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Assume we have i.i.d. replications from the mismeasured random vector
Y
=
X
+
ε
, where
X
and
ε
are mutually independent. We consider a data-driven bandwidth, based on a cross-validation ideas, for multivariate kernel deconvolution estimator of the density of
X
. The proposed data-driven bandwidth selection method is shown to be asymptotically optimal. As a by-product of the proof of this result, we show that the average squared error, the integrated squared error, and the mean integrated squared error are asymptotically equivalent error measures. |
---|---|
ISSN: | 1133-0686 1863-8260 |
DOI: | 10.1007/s11749-006-0027-5 |