A microfluidic flow-converter based on a double-chamber planar micropump
A microfluidic flow-converter that transforms an oscillatory flow into a steady-like flow in a reciprocating-type pumping device is successfully developed in this study. The flow quality at the outlet is found to be significantly improved. The present micro-device is composed of two single-chamber P...
Gespeichert in:
Veröffentlicht in: | Microfluidics and nanofluidics 2009-05, Vol.6 (5), p.669-678 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | A microfluidic flow-converter that transforms an oscillatory flow into a steady-like flow in a reciprocating-type pumping device is successfully developed in this study. The flow quality at the outlet is found to be significantly improved. The present micro-device is composed of two single-chamber PZT micropumps in parallel arrangement and can be fabricated using simple micro-electro-mechanical-system (MEMS) techniques. Based on the concept of the electronic bridge converter, the flow rectification is supported by four passive planar valves. Two operation modes, in-phase and anti-phase, were used to test the performance of the present device. In addition, the flow characteristics at the outlet were examined by an externally triggered micro-PIV system. The results reveal that the current flow-converter provided both high volume and smoothly continuous flow rates at the outlet when it was in anti-phase mode. Moreover, the volume flow rate was linearly proportional to the excitation frequency within a specific frequency regime. This indicates that the flow-converter was easily operated and controlled. The present microfluidic flow-converter has great potential for integration into future portable micro- or bio-fluidic systems. |
---|---|
ISSN: | 1613-4982 1613-4990 |
DOI: | 10.1007/s10404-008-0347-8 |