Assessing the error in bootstrap estimates with dependent data

Bootstrap estimates, like most random variables, are subject to sampling variation. Efron and Tibshirani (1993) studied the variability in bootstrap estimates with independent data. Efron (1992) proposed the jackknife-after-bootstrap, a method for estimating the variability from the bootstrap sample...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Test (Madrid, Spain) Spain), 2000-12, Vol.9 (2), p.471-486
Hauptverfasser: Mahmoud, Mohamed, Mokhlis, Nahed A., Ibrahim, Sahar A. N.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 486
container_issue 2
container_start_page 471
container_title Test (Madrid, Spain)
container_volume 9
creator Mahmoud, Mohamed
Mokhlis, Nahed A.
Ibrahim, Sahar A. N.
description Bootstrap estimates, like most random variables, are subject to sampling variation. Efron and Tibshirani (1993) studied the variability in bootstrap estimates with independent data. Efron (1992) proposed the jackknife-after-bootstrap, a method for estimating the variability from the bootstrap samples themselves. We address the issue of studying the variability in bootstrap estimates for dependent data. We modify Efron's method to render it suitable to operate through the block bootstrap. A simulation study is carried out to investigate the consistency of the modified method. The performance of this method is judged by using the same setting as that used by Efron and Tibshirani (1993). Our results confirm that this method is reliable and has an advantage in the context of dependent data.[PUBLICATION ABSTRACT]
doi_str_mv 10.1007/BF02595746
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1112394010</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2790607341</sourcerecordid><originalsourceid>FETCH-LOGICAL-c216t-adf2f4f35918ba5ea64ebc3f15552093d1a8b6472cc8a702201d9760b0f1e2173</originalsourceid><addsrcrecordid>eNpFkE9Lw0AUxBdRsFYvfoIFb0L0vf2bXIRaWhUKXvS8bJK3NkWTuLtF_PZGKniaOQwzP4axS4QbBLC392sQutJWmSM2w9LIohQGjiePUhZgSnPKzlLaARhlBM7Y3SIlSqnr33jeEqcYh8i7ntfDkFOOfuSUcvfhMyX-1eUtb2mkvqU-89Znf85Ogn9PdPGnc_a6Xr0sH4vN88PTcrEpGoEmF74NIqggdYVl7TV5o6huZECttYBKtujL2igrmqb0FoQAbCtroIaAJNDKObs69I5x-NxPSG437GM_TTpEFLJSgDClrg-pJg4pRQpujBN7_HYI7vcf9_-P_AFaw1Zx</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1112394010</pqid></control><display><type>article</type><title>Assessing the error in bootstrap estimates with dependent data</title><source>Springer Nature - Complete Springer Journals</source><creator>Mahmoud, Mohamed ; Mokhlis, Nahed A. ; Ibrahim, Sahar A. N.</creator><creatorcontrib>Mahmoud, Mohamed ; Mokhlis, Nahed A. ; Ibrahim, Sahar A. N.</creatorcontrib><description>Bootstrap estimates, like most random variables, are subject to sampling variation. Efron and Tibshirani (1993) studied the variability in bootstrap estimates with independent data. Efron (1992) proposed the jackknife-after-bootstrap, a method for estimating the variability from the bootstrap samples themselves. We address the issue of studying the variability in bootstrap estimates for dependent data. We modify Efron's method to render it suitable to operate through the block bootstrap. A simulation study is carried out to investigate the consistency of the modified method. The performance of this method is judged by using the same setting as that used by Efron and Tibshirani (1993). Our results confirm that this method is reliable and has an advantage in the context of dependent data.[PUBLICATION ABSTRACT]</description><identifier>ISSN: 1133-0686</identifier><identifier>EISSN: 1863-8260</identifier><identifier>DOI: 10.1007/BF02595746</identifier><language>eng</language><publisher>Heidelberg: Springer Nature B.V</publisher><subject>Bootstrap method ; Estimates ; Random variables ; Studies</subject><ispartof>Test (Madrid, Spain), 2000-12, Vol.9 (2), p.471-486</ispartof><rights>Sociedad Española de Estadistica e Investigación Operativa 2000</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c216t-adf2f4f35918ba5ea64ebc3f15552093d1a8b6472cc8a702201d9760b0f1e2173</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids></links><search><creatorcontrib>Mahmoud, Mohamed</creatorcontrib><creatorcontrib>Mokhlis, Nahed A.</creatorcontrib><creatorcontrib>Ibrahim, Sahar A. N.</creatorcontrib><title>Assessing the error in bootstrap estimates with dependent data</title><title>Test (Madrid, Spain)</title><description>Bootstrap estimates, like most random variables, are subject to sampling variation. Efron and Tibshirani (1993) studied the variability in bootstrap estimates with independent data. Efron (1992) proposed the jackknife-after-bootstrap, a method for estimating the variability from the bootstrap samples themselves. We address the issue of studying the variability in bootstrap estimates for dependent data. We modify Efron's method to render it suitable to operate through the block bootstrap. A simulation study is carried out to investigate the consistency of the modified method. The performance of this method is judged by using the same setting as that used by Efron and Tibshirani (1993). Our results confirm that this method is reliable and has an advantage in the context of dependent data.[PUBLICATION ABSTRACT]</description><subject>Bootstrap method</subject><subject>Estimates</subject><subject>Random variables</subject><subject>Studies</subject><issn>1133-0686</issn><issn>1863-8260</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2000</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNpFkE9Lw0AUxBdRsFYvfoIFb0L0vf2bXIRaWhUKXvS8bJK3NkWTuLtF_PZGKniaOQwzP4axS4QbBLC392sQutJWmSM2w9LIohQGjiePUhZgSnPKzlLaARhlBM7Y3SIlSqnr33jeEqcYh8i7ntfDkFOOfuSUcvfhMyX-1eUtb2mkvqU-89Znf85Ogn9PdPGnc_a6Xr0sH4vN88PTcrEpGoEmF74NIqggdYVl7TV5o6huZECttYBKtujL2igrmqb0FoQAbCtroIaAJNDKObs69I5x-NxPSG437GM_TTpEFLJSgDClrg-pJg4pRQpujBN7_HYI7vcf9_-P_AFaw1Zx</recordid><startdate>20001201</startdate><enddate>20001201</enddate><creator>Mahmoud, Mohamed</creator><creator>Mokhlis, Nahed A.</creator><creator>Ibrahim, Sahar A. N.</creator><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>88C</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8FL</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>FYUFA</scope><scope>F~G</scope><scope>GHDGH</scope><scope>H8D</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>L.-</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0C</scope><scope>M0T</scope><scope>M7S</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYYUZ</scope><scope>Q9U</scope></search><sort><creationdate>20001201</creationdate><title>Assessing the error in bootstrap estimates with dependent data</title><author>Mahmoud, Mohamed ; Mokhlis, Nahed A. ; Ibrahim, Sahar A. N.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c216t-adf2f4f35918ba5ea64ebc3f15552093d1a8b6472cc8a702201d9760b0f1e2173</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2000</creationdate><topic>Bootstrap method</topic><topic>Estimates</topic><topic>Random variables</topic><topic>Studies</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mahmoud, Mohamed</creatorcontrib><creatorcontrib>Mokhlis, Nahed A.</creatorcontrib><creatorcontrib>Ibrahim, Sahar A. N.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Healthcare Administration Database (Alumni)</collection><collection>ProQuest Pharma Collection</collection><collection>ProQuest Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Business Premium Collection (Alumni)</collection><collection>Health Research Premium Collection</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>Aerospace Database</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ABI/INFORM Global</collection><collection>Healthcare Administration Database</collection><collection>Engineering Database</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ABI/INFORM Collection China</collection><collection>ProQuest Central Basic</collection><jtitle>Test (Madrid, Spain)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mahmoud, Mohamed</au><au>Mokhlis, Nahed A.</au><au>Ibrahim, Sahar A. N.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Assessing the error in bootstrap estimates with dependent data</atitle><jtitle>Test (Madrid, Spain)</jtitle><date>2000-12-01</date><risdate>2000</risdate><volume>9</volume><issue>2</issue><spage>471</spage><epage>486</epage><pages>471-486</pages><issn>1133-0686</issn><eissn>1863-8260</eissn><abstract>Bootstrap estimates, like most random variables, are subject to sampling variation. Efron and Tibshirani (1993) studied the variability in bootstrap estimates with independent data. Efron (1992) proposed the jackknife-after-bootstrap, a method for estimating the variability from the bootstrap samples themselves. We address the issue of studying the variability in bootstrap estimates for dependent data. We modify Efron's method to render it suitable to operate through the block bootstrap. A simulation study is carried out to investigate the consistency of the modified method. The performance of this method is judged by using the same setting as that used by Efron and Tibshirani (1993). Our results confirm that this method is reliable and has an advantage in the context of dependent data.[PUBLICATION ABSTRACT]</abstract><cop>Heidelberg</cop><pub>Springer Nature B.V</pub><doi>10.1007/BF02595746</doi><tpages>16</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1133-0686
ispartof Test (Madrid, Spain), 2000-12, Vol.9 (2), p.471-486
issn 1133-0686
1863-8260
language eng
recordid cdi_proquest_journals_1112394010
source Springer Nature - Complete Springer Journals
subjects Bootstrap method
Estimates
Random variables
Studies
title Assessing the error in bootstrap estimates with dependent data
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T12%3A55%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Assessing%20the%20error%20in%20bootstrap%20estimates%20with%20dependent%20data&rft.jtitle=Test%20(Madrid,%20Spain)&rft.au=Mahmoud,%20Mohamed&rft.date=2000-12-01&rft.volume=9&rft.issue=2&rft.spage=471&rft.epage=486&rft.pages=471-486&rft.issn=1133-0686&rft.eissn=1863-8260&rft_id=info:doi/10.1007/BF02595746&rft_dat=%3Cproquest_cross%3E2790607341%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1112394010&rft_id=info:pmid/&rfr_iscdi=true