Assessing the error in bootstrap estimates with dependent data

Bootstrap estimates, like most random variables, are subject to sampling variation. Efron and Tibshirani (1993) studied the variability in bootstrap estimates with independent data. Efron (1992) proposed the jackknife-after-bootstrap, a method for estimating the variability from the bootstrap sample...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Test (Madrid, Spain) Spain), 2000-12, Vol.9 (2), p.471-486
Hauptverfasser: Mahmoud, Mohamed, Mokhlis, Nahed A., Ibrahim, Sahar A. N.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Bootstrap estimates, like most random variables, are subject to sampling variation. Efron and Tibshirani (1993) studied the variability in bootstrap estimates with independent data. Efron (1992) proposed the jackknife-after-bootstrap, a method for estimating the variability from the bootstrap samples themselves. We address the issue of studying the variability in bootstrap estimates for dependent data. We modify Efron's method to render it suitable to operate through the block bootstrap. A simulation study is carried out to investigate the consistency of the modified method. The performance of this method is judged by using the same setting as that used by Efron and Tibshirani (1993). Our results confirm that this method is reliable and has an advantage in the context of dependent data.[PUBLICATION ABSTRACT]
ISSN:1133-0686
1863-8260
DOI:10.1007/BF02595746