Flow characterization of valveless micropump using driving equivalent moment: theory and experiments
A valveless micropump, actuated by a PZT disk bonded to a glass plate, can generate positive flow. In order to estimate flow characteristics of micropumps, it is necessary to theoretically analyze the radial expansion (more specifically, the equivalent moment) of the PZT disk according to the voltag...
Gespeichert in:
Veröffentlicht in: | Microfluidics and nanofluidics 2008-12, Vol.5 (6), p.795-807 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | A valveless micropump, actuated by a PZT disk bonded to a glass plate, can generate positive flow. In order to estimate flow characteristics of micropumps, it is necessary to theoretically analyze the radial expansion (more specifically, the equivalent moment) of the PZT disk according to the voltage input. Using the equivalent moment, deflection equations are derived for the tri-layer disk (PZT, epoxy bonder and glass plate) and are confirmed to match well with experiments. The flow rate of the valveless micropump is also theoretically and experimentally investigated in terms of input voltage and oscillation frequency. The flow increased at a rate of 0.1 μL/min/V, and the maximum flow rate was obtained at the driving frequency of around 225 Hz. |
---|---|
ISSN: | 1613-4982 1613-4990 |
DOI: | 10.1007/s10404-008-0275-7 |