Mineralogical, stable isotope, and fluid inclusion studies of spatially related porphyry Cu and epithermal Au-Te mineralization, Fakos Peninsula, Limnos Island, Greece
The Fakos porphyry Cu and epithermal Au-Te deposit, Limnos Island, Greece, is hosted in a ~20 Ma quartz monzonite and shoshonitic subvolcanic rocks that intruded middle Eocene to lower Miocene sedimentary basement rocks. Metallic mineralization formed in three stages in quartz and quartz-calcite vei...
Gespeichert in:
Veröffentlicht in: | Mineralogy and petrology 2012-05, Vol.105 (1-2), p.85-111 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The Fakos porphyry Cu and epithermal Au-Te deposit, Limnos Island, Greece, is hosted in a ~20 Ma quartz monzonite and shoshonitic subvolcanic rocks that intruded middle Eocene to lower Miocene sedimentary basement rocks. Metallic mineralization formed in three stages in quartz and quartz-calcite veins. Early porphyry-style (Stage 1) metallic minerals consist of pyrite, chalcopyrite, galena, bornite, sphalerite, molybdenite, and iron oxides, which are surrounded by halos of potassic and propylitic alteration. Stage 2 mineralization is composed mostly of quartz-tourmaline veins associated with sericitic alteration and disseminated pyrite and molybdenite, whereas Stage 3, epithermal-style mineralization is characterized by polymetallic veins containing pyrite, chalcopyrite, sphalerite, galena, enargite, bournonite, tetrahedrite-tennantite, hessite, petzite, altaite, an unknown cervelleite-like Ag-telluride, native Au, and Au-Ag alloy. Stage 3 veins are spatially associated with sericitic and argillic alteration. Fluid inclusions in quartz from Stage 1 (porphyry-style) mineralization contain five types of inclusions. Type I, liquid–vapor inclusions, which homogenize at temperatures ranging from 189.5°C to 403.3°C have salinities of 14.8 to 19.9 wt. % NaCl equiv. Type II, liquid–vapor-NaCl, Type III liquid–vapor-NaCl-XCl
2
(where XCl is an unknown chloride phase, likely CaCl
2
), and Type IV, liquid–vapor-hematite ± NaCl homogenize to the liquid phase by liquid–vapor homogenization or by daughter crystal dissolution at temperatures of 209.3 to 740.5 °C, 267.6 to 780.8 °C, and 357.9 to 684.2 °C, respectively, and, Type V, vapor-rich inclusions. Stage 2 veins are devoid of interpretable fluid inclusions. Quartz from Stage 3 (epithermal-style) veins contains two types of fluid inclusions, Type I, liquid–vapor inclusions that homogenize to the liquid phase (191.6 to 310.0 °C) with salinities of 1.40 to 9.73 wt. % NaCl equiv., and Type II, vapor-rich inclusions. Mixing of magmatic fluids with meteoric water in the epithermal environment is responsible for the dilution of the ore fluids that formed Stage 3 veins. Eutectic melting temperatures of −35.4 to −24.3 °C for Type I inclusions hosted in both porphyry- and epithermal-style veins suggest the presence of CaCl
2
, MgCl
2
, and/or FeCl
2
in the magmatic-hydrothermal fluids. Sulfur isotope values of pyrite, galena, sphalerite, and molybdenite range from δ
34
S = −6.82 to −0.82 per mil and overlap for porphyry and e |
---|---|
ISSN: | 0930-0708 1438-1168 |
DOI: | 10.1007/s00710-012-0196-8 |