A comparison of blood-brain barrier and blood-nerve barrier endothelial cell markers

A number of major properties of endothelial cells (EC) at the blood-brain barrier (BBB) have been shown to be astrocyte-dependent. Whether analogous properties at the blood-nerve barrier (BNB) are induced and maintained by Schwann cells has not been investigated. As a preliminary investigation we ha...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Anatomy and Embryology 1999-06, Vol.199 (6), p.509-517
Hauptverfasser: Orte, C, Lawrenson, J G, Finn, T M, Reid, A R, Allt, G
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A number of major properties of endothelial cells (EC) at the blood-brain barrier (BBB) have been shown to be astrocyte-dependent. Whether analogous properties at the blood-nerve barrier (BNB) are induced and maintained by Schwann cells has not been investigated. As a preliminary investigation we have undertaken a comparative study of six EC membrane markers at the BBB and BNB and perineurium. Employing immunoblotting and immunocytochemistry the relative distribution between rat brain cortex and sciatic nerve was determined for the glucose transporter (GLUT-1), the transferin receptor (OX-26), the endothelial barrier antigen (EBA) and the OX-47 antigen. Using enzyme cytochemistry the same comparison was made for gamma-glutamyl transpeptidase (GGTP) and alkaline phosphatase. By immunocytochemistry GLUT-1 was uniformly strongly represented in brain EC, nerve EC and perineurium. OX-26 was strongly positive in brain EC but present only in trace quantities in nerve EC and perineurium. EBA similarly showed strong positivity in brain EC and trace amounts in nerve EC but was absent from perineurium. OX-47 was present moderately in brain EC and perineurium but absent from nerve EC. Quantitative immunoblotting of brain and sciatic nerve homogenates showed statistically significant differences in the level of expression of EBA and OX-26 between the two tissues. Enzyme cytochemistry showed that GGTP was strongly positive in brain EC but absent from nerve EC and perineurium. Alkaline phosphatase stained strongly in brain and nerve EC and was absent from perineurium. In summary the six membrane markers were heterogeneously represented in nerve compared with brain. This pattern of distribution in the nerve cannot simply be accounted for by the absence of astrocytes and their inductive influences. Any inductive influences of Schwann cells require investigation.
ISSN:0340-2061
1863-2653
0340-2061
DOI:10.1007/s004290050248