A wavelet-based time-varying autoregressive model for non-stationary and irregular time series
In this work we propose an autoregressive model with parameters varying in time applied to irregularly spaced non-stationary time series. We expand all the functional parameters in a wavelet basis and estimate the coefficients by least squares after truncation at a suitable resolution level. We also...
Gespeichert in:
Veröffentlicht in: | Journal of applied statistics 2012-11, Vol.39 (11), p.2313-2325 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this work we propose an autoregressive model with parameters varying in time applied to irregularly spaced non-stationary time series. We expand all the functional parameters in a wavelet basis and estimate the coefficients by least squares after truncation at a suitable resolution level. We also present some simulations in order to evaluate both the estimation method and the model behavior on finite samples. Applications to silicates and nitrites irregularly observed data are provided as well. |
---|---|
ISSN: | 0266-4763 1360-0532 |
DOI: | 10.1080/02664763.2012.702267 |