primary walls of cotton fibers contain an ensheathing pectin layer

Cotton fiber walls (1-2 days post anthesis) are distinctly bilayered compared to those of nonfiber epidermal cells, with a more electron-opaque outer layer and a less electron-opaque, more finely fibrillar inner layer. When probed with antibodies and affinity probes to various saccharides, xylogluca...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Protoplasma 1999-09, Vol.209 (3/4), p.226-237
Hauptverfasser: Vaughn, K.C, Turley, R.B
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Cotton fiber walls (1-2 days post anthesis) are distinctly bilayered compared to those of nonfiber epidermal cells, with a more electron-opaque outer layer and a less electron-opaque, more finely fibrillar inner layer. When probed with antibodies and affinity probes to various saccharides, xyloglucans and cellulose are found exclusively in the inner layer and de-esterified pectins and extensin exclusively in the outer layer. Ovular epidermal cells that do not differentiate into fibers have no pectin sheath, but are labelled throughout with antixyloglucan and cellulase-gold probes. Middle lamellae between adjacent cells were clearly labelled with the antibodies to de-esterified pectins, however. Similarly, cell walls of leaf trichomes have a bilayered wall strongly enriched in pectin, whereas other epidermal cells are not bilayered and are pectin poor. These data indicate that one of the early markers of fiber and trichome cells from other epidermal cells involves the production of a pectin layer. The de-esterified pectins present in the ensheathing layer may allow for expansion and elongation of the fiber cells that does not occur in the other epidermal cells without such a sheath or may even be a consequence of the elongation process.
ISSN:0033-183X
1615-6102
DOI:10.1007/bf01453451