Solute dispersion in oscillating electro-osmotic flow with boundary mass exchange

Mass transfer in an oscillatory electro-osmotic flow (EOF) is theoretically studied, for the case of a cylindrical tube with a reactive wall. An expression for the dispersion coefficient, reflecting the time-averaged mass flux of an electrically neutral solute, is derived analytically. Under the inf...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Microfluidics and nanofluidics 2011, Vol.10 (1), p.97-106
Hauptverfasser: Ramon, Guy, Agnon, Yehuda, Dosoretz, Carlos
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Mass transfer in an oscillatory electro-osmotic flow (EOF) is theoretically studied, for the case of a cylindrical tube with a reactive wall. An expression for the dispersion coefficient, reflecting the time-averaged mass flux of an electrically neutral solute, is derived analytically. Under the influence of a reversible solute-wall mass exchange, the dispersion coefficient exhibits a complex dependence on the various parameters representing the effects of the electric double-layer thickness, oscillation frequency, solution transport properties, solute partitioning, and reaction kinetics. Our results suggest that, in the presence of a reversible mass exchange at the wall, an oscillatory EOF may be used for separation of species. It is found that optimal conditions for separation are achieved for a thin double-layer, where an inert solute, or one with slow exchange kinetics, experiences virtually no dispersion while the dispersion is maximized for the reactive solute exhibiting fast kinetics.
ISSN:1613-4982
1613-4990
DOI:10.1007/s10404-010-0650-z