Regularized learning in Banach spaces as an optimization problem: representer theorems
We view regularized learning of a function in a Banach space from its finite samples as an optimization problem. Within the framework of reproducing kernel Banach spaces, we prove the representer theorem for the minimizer of regularized learning schemes with a general loss function and a nondecreasi...
Gespeichert in:
Veröffentlicht in: | Journal of global optimization 2012-10, Vol.54 (2), p.235-250 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We view regularized learning of a function in a Banach space from its finite samples as an optimization problem. Within the framework of reproducing kernel Banach spaces, we prove the representer theorem for the minimizer of regularized learning schemes with a general loss function and a nondecreasing regularizer. When the loss function and the regularizer are differentiable, a characterization equation for the minimizer is also established. |
---|---|
ISSN: | 0925-5001 1573-2916 |
DOI: | 10.1007/s10898-010-9575-z |