An Insulin-Like Growth Factor-I Receptor Defect Associated with Short Stature and Impaired Carbohydrate Homeostasis in an Italian Pedigree

Background: Mutations in the insulin-like growth factor-I (IGF-I) receptor (IGF1R) have been associated with prenatal and postnatal growth retardation. However, little is known about potential effects of mutations in the IGF1R on carbohydrate homeostasis. Methods: We investigated clinical, endocrine...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Hormone research in paediatrics 2011-01, Vol.76 (2), p.136-143
Hauptverfasser: Mohn, A., Marcovecchio, M.L., de Giorgis, T., Pfaeffle, R., Chiarelli, F., Kiess, W.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Background: Mutations in the insulin-like growth factor-I (IGF-I) receptor (IGF1R) have been associated with prenatal and postnatal growth retardation. However, little is known about potential effects of mutations in the IGF1R on carbohydrate homeostasis. Methods: We investigated clinical, endocrine and metabolic parameters in four family members carrying a novel IGF1R mutation (p.Tyr387X): an 18-year-old male (index case), his sister and two paternal aunts. Results: All family members showed a variable degree of impairment in prenatal growth, with birth weight standard deviation scores (SDS) between –1.65 and –2.37 and birth length SDS between –1.78 and –3.08. Their postnatal growth was also impaired, with height SDS between –1.75 and –4.86. The index case presented high IGF-I levels during childhood and adolescence and delayed bone age. The index case and his two paternal aunts had impaired glucose tolerance (IGT) associated with a variable degree of alterations in insulin sensitivity and secretion. In contrast, the index case’s sister, who had had IGT during pregnancy, showed normal glucose metabolism but reduced insulin sensitivity. Conclusion: This is the first study showing an association between a novel IGF1R mutation and a variable degree of alterations in prenatal and postnatal growth and in carbohydrate metabolism.
ISSN:1663-2818
1663-2826
DOI:10.1159/000324957