Global Weak Solutions to a Sixth Order Cahn--Hilliard Type Equation
We study a sixth order Cahn--Hilliard type equation that arises as a model for the faceting of a growing surface. We show existence of global-in-time weak solutions in two space dimensions, assuming periodic boundary conditions. We also establish exponential-in-time a priori estimates on the $H^3$ n...
Gespeichert in:
Veröffentlicht in: | SIAM journal on mathematical analysis 2012-01, Vol.44 (5), p.3369-3387 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We study a sixth order Cahn--Hilliard type equation that arises as a model for the faceting of a growing surface. We show existence of global-in-time weak solutions in two space dimensions, assuming periodic boundary conditions. We also establish exponential-in-time a priori estimates on the $H^3$ norm of solutions. These bounds enable us to prove the uniqueness of weak solutions. We also show the regularizing effect of the equation on the data. [PUBLICATION ABSTRACT] |
---|---|
ISSN: | 0036-1410 1095-7154 |
DOI: | 10.1137/100817590 |