Quantitative Differentiation: A General Formulation
Let dx denote Lebesgue measure on \documentclass{article} \usepackage{mathrsfs} \usepackage{amsmath, amssymb} \pagestyle{empty} \begin{document} \begin{align*}\mathbb{R}^n\end{align*} \end{document}. With respect to the measure \documentclass{article} \usepackage{mathrsfs} \usepackage{amsmath, amssy...
Gespeichert in:
Veröffentlicht in: | Communications on pure and applied mathematics 2012-12, Vol.65 (12), p.1641-1670 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Let dx denote Lebesgue measure on
\documentclass{article} \usepackage{mathrsfs} \usepackage{amsmath, amssymb} \pagestyle{empty} \begin{document} \begin{align*}\mathbb{R}^n\end{align*} \end{document}. With respect to the measure
\documentclass{article} \usepackage{mathrsfs} \usepackage{amsmath, amssymb} \pagestyle{empty} \begin{document} \begin{align*}\mathcal C=r^{-1}\, dr\times dx\end{align*} \end{document}
on the collection of balls
\documentclass{article} \usepackage{mathrsfs} \usepackage{amsmath, amssymb} \pagestyle{empty} \begin{document} \begin{align*}B_r(x)\subset \mathbb{R}^n\end{align*} \end{document}, the subcollection of balls
\documentclass{article} \usepackage{mathrsfs} \usepackage{amsmath, amssymb} \pagestyle{empty} \begin{document} \begin{align*}B_r(x)\subset B_1(0)\end{align*} \end{document}
has infinite measure. Let
\documentclass{article} \usepackage{mathrsfs} \usepackage{amsmath, amssymb} \pagestyle{empty} \begin{document} \begin{align*}f:B_1(0)\to {\mathbb R}\end{align*} \end{document}
have bounded gradient,
\documentclass{article} \usepackage{mathrsfs} \usepackage{amsmath, amssymb} \pagestyle{empty} \begin{document} \begin{align*}|\nabla f |\leq 1\end{align*} \end{document}. For any
\documentclass{article} \usepackage{mathrsfs} \usepackage{amsmath, amssymb} \pagestyle{empty} \begin{document} \begin{align*}B_r(x)\subset B_1(0)\end{align*} \end{document}
there is a natural scale‐invariant quantity that measures the deviation of
\documentclass{article} \usepackage{mathrsfs} \usepackage{amsmath, amssymb} \pagestyle{empty} \begin{document} \begin{align*}f\,|\, B_r(x)\end{align*} \end{document}
from being an affine linear function. The most basic case of quantitative differentiation (due to Peter Jones) asserts that for all
\documentclass{article} \usepackage{mathrsfs} \usepackage{amsmath, amssymb} \pagestyle{empty} \begin{document} \begin{align*}\epsilon > 0\end{align*} \end{document}, the measure of the collection of balls on which the deviation from linearity is
\documentclass{article} \usepackage{mathrsfs} \usepackage{amsmath, amssymb} \pagestyle{empty} \begin{document} \begin{align*}\geq \epsilon\end{align*} \end{document}
is finite and controlled by
\documentclass{article} \usepackage{mathrsfs} \usepackage{amsmath, amssymb} \pagestyle{empty} \begin{document} \begin{align*}\epsilon\end{align*} \end{document}, independent of the particular function
\documentclass{article} \usepackage{mathrsfs} \usepackage{amsmath, amssymb} \pagestyle{emp |
---|---|
ISSN: | 0010-3640 1097-0312 |
DOI: | 10.1002/cpa.21424 |