Equivariant Characteristic Classes of Singular Complex Algebraic Varieties
Homology Hirzebruch characteristic classes for singular varieties have been recently defined by Brasselet, Schüurmann, and Yokura as an attempt to unify previously known characteristic class theories for singular spaces (e.g., MacPherson‐Chern classes, Baum‐Fulton‐MacPherson Todd classes, and Goresk...
Gespeichert in:
Veröffentlicht in: | Communications on pure and applied mathematics 2012-12, Vol.65 (12), p.1722-1769 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1769 |
---|---|
container_issue | 12 |
container_start_page | 1722 |
container_title | Communications on pure and applied mathematics |
container_volume | 65 |
creator | Cappell, Sylvain E. Maxim, Laurentiu G. Schürmann, Jörg Shaneson, Julius L. |
description | Homology Hirzebruch characteristic classes for singular varieties have been recently defined by Brasselet, Schüurmann, and Yokura as an attempt to unify previously known characteristic class theories for singular spaces (e.g., MacPherson‐Chern classes, Baum‐Fulton‐MacPherson Todd classes, and Goresky‐MacPherson $L$‐classes). In this paper we define equivariant analogues of these classes for singular quasi‐projective varieties acted upon by a finite group of algebraic automorphisms and show how these can be used to calculate the homology Hirzebruch classes of global quotient varieties. We also compute the new classes in the context of monodromy problems, e.g., for varieties that fiber equivariantly (in the complex topology) over a connected algebraic manifold. As another application, we discuss Atiyah‐Meyer type formulae for twisted Hirzebruch classes of global orbifolds. © 2012 Wiley Periodicals, Inc. |
doi_str_mv | 10.1002/cpa.21427 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1081333340</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2774696991</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4017-7b813edded63e9fd3f9b74550888926b88204ecab0a79b53a187530244f498b03</originalsourceid><addsrcrecordid>eNp1kF1PwjAUhhujiYhe-A-WeOXF4HTt1u6SDAEJURPx467ptg6Lg0G7Kfx7i1PvPDcnJ3ne9yQPQpcYehgg6Gcb2QswDdgR6mCImQ8EB8eoA4DBJxGFU3Rm7dKdmHLSQdObbaM_pNFyXXvJmzQyq5XRttaZl5TSWmW9qvAe9XrRlNJ4SbXalGrnDcqFSo101LMLq1ore45OClladfGzu-hpdDNPJv7sfnybDGZ-RgEzn6UcE5XnKo-IioucFHHKaBgC5zwOopTzAKjKZAqSxWlIJOYsJBBQWtCYp0C66Krt3Zhq2yhbi2XVmLV7KTC4bjf0QF23VGYqa40qxMbolTR7B4mDKuFUiW9Vju237Kcu1f5_UCQPg9-E3yacKbX7S0jzLiJGWChe7sZiGA3n4-noVUzIFzVDeI4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1081333340</pqid></control><display><type>article</type><title>Equivariant Characteristic Classes of Singular Complex Algebraic Varieties</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Cappell, Sylvain E. ; Maxim, Laurentiu G. ; Schürmann, Jörg ; Shaneson, Julius L.</creator><creatorcontrib>Cappell, Sylvain E. ; Maxim, Laurentiu G. ; Schürmann, Jörg ; Shaneson, Julius L.</creatorcontrib><description>Homology Hirzebruch characteristic classes for singular varieties have been recently defined by Brasselet, Schüurmann, and Yokura as an attempt to unify previously known characteristic class theories for singular spaces (e.g., MacPherson‐Chern classes, Baum‐Fulton‐MacPherson Todd classes, and Goresky‐MacPherson $L$‐classes). In this paper we define equivariant analogues of these classes for singular quasi‐projective varieties acted upon by a finite group of algebraic automorphisms and show how these can be used to calculate the homology Hirzebruch classes of global quotient varieties. We also compute the new classes in the context of monodromy problems, e.g., for varieties that fiber equivariantly (in the complex topology) over a connected algebraic manifold. As another application, we discuss Atiyah‐Meyer type formulae for twisted Hirzebruch classes of global orbifolds. © 2012 Wiley Periodicals, Inc.</description><identifier>ISSN: 0010-3640</identifier><identifier>EISSN: 1097-0312</identifier><identifier>DOI: 10.1002/cpa.21427</identifier><identifier>CODEN: CPMAMV</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc., A Wiley Company</publisher><subject>Algebra ; Mathematical functions ; Mathematical problems</subject><ispartof>Communications on pure and applied mathematics, 2012-12, Vol.65 (12), p.1722-1769</ispartof><rights>Copyright © 2011 Wiley Periodicals, Inc.</rights><rights>Copyright John Wiley and Sons, Limited Dec 2012</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4017-7b813edded63e9fd3f9b74550888926b88204ecab0a79b53a187530244f498b03</citedby><cites>FETCH-LOGICAL-c4017-7b813edded63e9fd3f9b74550888926b88204ecab0a79b53a187530244f498b03</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fcpa.21427$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fcpa.21427$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,777,781,1413,27906,27907,45556,45557</link.rule.ids></links><search><creatorcontrib>Cappell, Sylvain E.</creatorcontrib><creatorcontrib>Maxim, Laurentiu G.</creatorcontrib><creatorcontrib>Schürmann, Jörg</creatorcontrib><creatorcontrib>Shaneson, Julius L.</creatorcontrib><title>Equivariant Characteristic Classes of Singular Complex Algebraic Varieties</title><title>Communications on pure and applied mathematics</title><addtitle>Comm. Pure Appl. Math</addtitle><description>Homology Hirzebruch characteristic classes for singular varieties have been recently defined by Brasselet, Schüurmann, and Yokura as an attempt to unify previously known characteristic class theories for singular spaces (e.g., MacPherson‐Chern classes, Baum‐Fulton‐MacPherson Todd classes, and Goresky‐MacPherson $L$‐classes). In this paper we define equivariant analogues of these classes for singular quasi‐projective varieties acted upon by a finite group of algebraic automorphisms and show how these can be used to calculate the homology Hirzebruch classes of global quotient varieties. We also compute the new classes in the context of monodromy problems, e.g., for varieties that fiber equivariantly (in the complex topology) over a connected algebraic manifold. As another application, we discuss Atiyah‐Meyer type formulae for twisted Hirzebruch classes of global orbifolds. © 2012 Wiley Periodicals, Inc.</description><subject>Algebra</subject><subject>Mathematical functions</subject><subject>Mathematical problems</subject><issn>0010-3640</issn><issn>1097-0312</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNp1kF1PwjAUhhujiYhe-A-WeOXF4HTt1u6SDAEJURPx467ptg6Lg0G7Kfx7i1PvPDcnJ3ne9yQPQpcYehgg6Gcb2QswDdgR6mCImQ8EB8eoA4DBJxGFU3Rm7dKdmHLSQdObbaM_pNFyXXvJmzQyq5XRttaZl5TSWmW9qvAe9XrRlNJ4SbXalGrnDcqFSo101LMLq1ore45OClladfGzu-hpdDNPJv7sfnybDGZ-RgEzn6UcE5XnKo-IioucFHHKaBgC5zwOopTzAKjKZAqSxWlIJOYsJBBQWtCYp0C66Krt3Zhq2yhbi2XVmLV7KTC4bjf0QF23VGYqa40qxMbolTR7B4mDKuFUiW9Vju237Kcu1f5_UCQPg9-E3yacKbX7S0jzLiJGWChe7sZiGA3n4-noVUzIFzVDeI4</recordid><startdate>201212</startdate><enddate>201212</enddate><creator>Cappell, Sylvain E.</creator><creator>Maxim, Laurentiu G.</creator><creator>Schürmann, Jörg</creator><creator>Shaneson, Julius L.</creator><general>Wiley Subscription Services, Inc., A Wiley Company</general><general>John Wiley and Sons, Limited</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>JQ2</scope></search><sort><creationdate>201212</creationdate><title>Equivariant Characteristic Classes of Singular Complex Algebraic Varieties</title><author>Cappell, Sylvain E. ; Maxim, Laurentiu G. ; Schürmann, Jörg ; Shaneson, Julius L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4017-7b813edded63e9fd3f9b74550888926b88204ecab0a79b53a187530244f498b03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Algebra</topic><topic>Mathematical functions</topic><topic>Mathematical problems</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cappell, Sylvain E.</creatorcontrib><creatorcontrib>Maxim, Laurentiu G.</creatorcontrib><creatorcontrib>Schürmann, Jörg</creatorcontrib><creatorcontrib>Shaneson, Julius L.</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><collection>ProQuest Computer Science Collection</collection><jtitle>Communications on pure and applied mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cappell, Sylvain E.</au><au>Maxim, Laurentiu G.</au><au>Schürmann, Jörg</au><au>Shaneson, Julius L.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Equivariant Characteristic Classes of Singular Complex Algebraic Varieties</atitle><jtitle>Communications on pure and applied mathematics</jtitle><addtitle>Comm. Pure Appl. Math</addtitle><date>2012-12</date><risdate>2012</risdate><volume>65</volume><issue>12</issue><spage>1722</spage><epage>1769</epage><pages>1722-1769</pages><issn>0010-3640</issn><eissn>1097-0312</eissn><coden>CPMAMV</coden><abstract>Homology Hirzebruch characteristic classes for singular varieties have been recently defined by Brasselet, Schüurmann, and Yokura as an attempt to unify previously known characteristic class theories for singular spaces (e.g., MacPherson‐Chern classes, Baum‐Fulton‐MacPherson Todd classes, and Goresky‐MacPherson $L$‐classes). In this paper we define equivariant analogues of these classes for singular quasi‐projective varieties acted upon by a finite group of algebraic automorphisms and show how these can be used to calculate the homology Hirzebruch classes of global quotient varieties. We also compute the new classes in the context of monodromy problems, e.g., for varieties that fiber equivariantly (in the complex topology) over a connected algebraic manifold. As another application, we discuss Atiyah‐Meyer type formulae for twisted Hirzebruch classes of global orbifolds. © 2012 Wiley Periodicals, Inc.</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc., A Wiley Company</pub><doi>10.1002/cpa.21427</doi><tpages>48</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0010-3640 |
ispartof | Communications on pure and applied mathematics, 2012-12, Vol.65 (12), p.1722-1769 |
issn | 0010-3640 1097-0312 |
language | eng |
recordid | cdi_proquest_journals_1081333340 |
source | Wiley Online Library Journals Frontfile Complete |
subjects | Algebra Mathematical functions Mathematical problems |
title | Equivariant Characteristic Classes of Singular Complex Algebraic Varieties |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T09%3A33%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Equivariant%20Characteristic%20Classes%20of%20Singular%20Complex%20Algebraic%20Varieties&rft.jtitle=Communications%20on%20pure%20and%20applied%20mathematics&rft.au=Cappell,%20Sylvain%20E.&rft.date=2012-12&rft.volume=65&rft.issue=12&rft.spage=1722&rft.epage=1769&rft.pages=1722-1769&rft.issn=0010-3640&rft.eissn=1097-0312&rft.coden=CPMAMV&rft_id=info:doi/10.1002/cpa.21427&rft_dat=%3Cproquest_cross%3E2774696991%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1081333340&rft_id=info:pmid/&rfr_iscdi=true |