Equivariant Characteristic Classes of Singular Complex Algebraic Varieties

Homology Hirzebruch characteristic classes for singular varieties have been recently defined by Brasselet, Schüurmann, and Yokura as an attempt to unify previously known characteristic class theories for singular spaces (e.g., MacPherson‐Chern classes, Baum‐Fulton‐MacPherson Todd classes, and Goresk...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Communications on pure and applied mathematics 2012-12, Vol.65 (12), p.1722-1769
Hauptverfasser: Cappell, Sylvain E., Maxim, Laurentiu G., Schürmann, Jörg, Shaneson, Julius L.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Homology Hirzebruch characteristic classes for singular varieties have been recently defined by Brasselet, Schüurmann, and Yokura as an attempt to unify previously known characteristic class theories for singular spaces (e.g., MacPherson‐Chern classes, Baum‐Fulton‐MacPherson Todd classes, and Goresky‐MacPherson $L$‐classes). In this paper we define equivariant analogues of these classes for singular quasi‐projective varieties acted upon by a finite group of algebraic automorphisms and show how these can be used to calculate the homology Hirzebruch classes of global quotient varieties. We also compute the new classes in the context of monodromy problems, e.g., for varieties that fiber equivariantly (in the complex topology) over a connected algebraic manifold. As another application, we discuss Atiyah‐Meyer type formulae for twisted Hirzebruch classes of global orbifolds. © 2012 Wiley Periodicals, Inc.
ISSN:0010-3640
1097-0312
DOI:10.1002/cpa.21427