Tertiary Scintillation Gas Proportional Scintillation Counter (TS-GPSC): First Experimental Results

A new concept for a gaseous radiation detector is presented: the Tertiary Scintillation Gas Proportional Scintillation Counter (TS-GPSC). In this detector the electric field induced secondary scintillation is first detected by a CsI-coated GEM-like structure where it releases photoelectrons which ar...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on nuclear science 2010-10, Vol.57 (5), p.2841-2847
Hauptverfasser: Carita, Liliana P M M, Conde, Carlos A N, Santos, Filomena P
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A new concept for a gaseous radiation detector is presented: the Tertiary Scintillation Gas Proportional Scintillation Counter (TS-GPSC). In this detector the electric field induced secondary scintillation is first detected by a CsI-coated GEM-like structure where it releases photoelectrons which are transferred through the GEM holes, with no charge multiplication, to another region where further field induced scintillation (tertiary) is produced and then again detected on a planar CsI-coated photocathode at the backplane of the detector. The electrons released therein are collected at a grid and constitute the detector's signal. Since there is no avalanche charge multiplication in the detector, the gain will be quite stable and, moreover, as the field induced scintillation yield is very high, and in spite of the low photocathode quantum efficiency, the gain will be high and with low fluctuations, so an improvement in the energy resolution as compared to other types of Gas Proportional Scintillation Counters is expected. The first prototype of the tertiary scintillation detector was tested in a xenon atmosphere for hard X-rays and experimental results are presented. Energy resolutions of 8.2% were achieved for 22.1 keV X-rays.
ISSN:0018-9499
1558-1578
DOI:10.1109/TNS.2010.2056385