DC Townsend Discharge in Nitrogen: Temperature-Dependent Phenomena

Low‐current Townsend discharge in nitrogen has been studied in the temperature range of T = 100–300 K in a semiconductor‐gas‐discharge structure. It was found that the sustaining voltage US increases with time when a current is passed through the structure at low T. This effect was not observed at r...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Contributions to plasma physics (1988) 2012-09, Vol.52 (8), p.682-691
Hauptverfasser: Lodygin, A. N., Portsel, L. M., Astrov, Yu. A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Low‐current Townsend discharge in nitrogen has been studied in the temperature range of T = 100–300 K in a semiconductor‐gas‐discharge structure. It was found that the sustaining voltage US increases with time when a current is passed through the structure at low T. This effect was not observed at room temperature. A hypothesis is put forward that a film of a neutral phase of nitrogen is formed on the electrodes under cryogenic discharge conditions. The presence of the condensed thin‐film phase leads to a decrease in the secondary electron emission from the electrode and to a corresponding increase in US. A possible mechanism of the phenomenon is associated with the formation of large neutral aggregates in the form of [N+2(N2)n]– in the gas discharge volume. The condensation of these aggregates seems to yield a phase that is comparatively stable at cryogenic temperatures (© 2012 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)
ISSN:0863-1042
1521-3986
DOI:10.1002/ctpp.201200024