Crop residue phosphorus: speciation and potential bio-availability
Background and Aims Phosphorus (P) mineralisation from crop residues is usually predicted from total P or carbon: phosphorus (C: P) ratios. However, these measures have limited accuracy as they do not take into account the presence of different P species that may be mineralised at different rates. I...
Gespeichert in:
Veröffentlicht in: | Plant and soil 2012-10, Vol.359 (1/2), p.375-385 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Background and Aims Phosphorus (P) mineralisation from crop residues is usually predicted from total P or carbon: phosphorus (C: P) ratios. However, these measures have limited accuracy as they do not take into account the presence of different P species that may be mineralised at different rates. In this study P speciation was determined using solution 31P nuclear magnetic resonance (NMR) spectroscopy to understand the potential fate of residue P in soils. Methods Mature above-ground biomass of eight different crops sampled from the field was portioned into stem, chaff and seed. Results The main forms of P detected in stem and chaff were orthophosphate (25–75 %), phospholipids (10–40 %) and RNA (5–30 %). Phytate was the dominant P species in seeds, and constituted up to 45 % of total P in chaff but was only detected in minor amounts ( |
---|---|
ISSN: | 0032-079X 1573-5036 |
DOI: | 10.1007/s11104-012-1216-5 |