Cramér-Rao Bounds for Polynomial Signal Estimation Using Sensors With AR(1) Drift

We seek to characterize the estimation performance of a sensor network where the individual sensors exhibit the phenomenon of drift, i.e., a gradual change of the bias. Though estimation in the presence of random errors has been extensively studied in the literature, the loss of estimation performan...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on signal processing 2012-10, Vol.60 (10), p.5494-5507
Hauptverfasser: Kar, S., Varshney, P. K., Palaniswami, M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We seek to characterize the estimation performance of a sensor network where the individual sensors exhibit the phenomenon of drift, i.e., a gradual change of the bias. Though estimation in the presence of random errors has been extensively studied in the literature, the loss of estimation performance due to systematic errors like drift have rarely been looked into. In this paper, we derive closed-form Fisher Information Matrix and subsequently Cramér-Rao bounds (up to reasonable approximation) for the estimation accuracy of drift-corrupted signals. We assume a polynomial time-series as the representative signal and an autoregressive process model for the drift. When the Markov parameter for drift ρ
ISSN:1053-587X
1941-0476
DOI:10.1109/TSP.2012.2204989