A Low Mach Number Limit of a Dispersive Navier–Stokes System

We establish a low Mach number limit for classical solutions over the whole space of a compressible fluid dynamic system that includes dispersive corrections to the Navier-Stokes equations. The limiting system is similar to a ghost effect system [Y. Sone, Kinetic Theory and Fluid Dynamics, Model. Si...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:SIAM journal on mathematical analysis 2012-01, Vol.44 (3), p.1760-1807
Hauptverfasser: Levermore, C. David, Sun, Weiran, Trivisa, Konstantina
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1807
container_issue 3
container_start_page 1760
container_title SIAM journal on mathematical analysis
container_volume 44
creator Levermore, C. David
Sun, Weiran
Trivisa, Konstantina
description We establish a low Mach number limit for classical solutions over the whole space of a compressible fluid dynamic system that includes dispersive corrections to the Navier-Stokes equations. The limiting system is similar to a ghost effect system [Y. Sone, Kinetic Theory and Fluid Dynamics, Model. Simul. Sci. Eng. Technol., Birkhäuser, Boston, 2002]. Our analysis builds upon the framework developed by Métivier and Schochet [Arch. Ration. Mech. Anal., 158 (2001), pp. 61-90] and Alazard [Arch. Ration. Mech. Anal., 180 (2006), pp. 1-73] for nondispersive systems. The strategy involves establishing a priori estimates for the slow motion as well as a priori estimates for the fast motion. The desired convergence is obtained by establishing the local decay of the energy of the fast motion. [PUBLICATION ABSTRACT]
doi_str_mv 10.1137/100818765
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1037526365</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2749784051</sourcerecordid><originalsourceid>FETCH-LOGICAL-c187t-5462c1ab63229d3a5e4c23221169c1288005b84733a0f7b45d1ff312cd0c34b33</originalsourceid><addsrcrecordid>eNo9kE1OwzAUhC0EEqWw4AaWWLEIvOdnO8kGqSq_UiiLwjpyHEekEBLspKg77sANOQlBRaxmFp9mRsPYMcIZIsXnCJBgEmu1wyYIqYpiVHKXTQBIRygR9tlBCCsA1DKFCbuY8az94PfGPvPF0BTO86xu6p63FTf8sg6d86FeO74w69r578-vZd--uMCXm9C75pDtVeY1uKM_nbKn66vH-W2UPdzczWdZZMcxfaSkFhZNoUmItCSjnLRi9Ig6tSiSBEAViYyJDFRxIVWJVUUobAmWZEE0ZSfb3M6374MLfb5qB_82VuYIFCuhSauROt1S1rcheFflna8b4zcjlP_ek__fQz9tLlRt</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1037526365</pqid></control><display><type>article</type><title>A Low Mach Number Limit of a Dispersive Navier–Stokes System</title><source>LOCUS - SIAM's Online Journal Archive</source><creator>Levermore, C. David ; Sun, Weiran ; Trivisa, Konstantina</creator><creatorcontrib>Levermore, C. David ; Sun, Weiran ; Trivisa, Konstantina</creatorcontrib><description>We establish a low Mach number limit for classical solutions over the whole space of a compressible fluid dynamic system that includes dispersive corrections to the Navier-Stokes equations. The limiting system is similar to a ghost effect system [Y. Sone, Kinetic Theory and Fluid Dynamics, Model. Simul. Sci. Eng. Technol., Birkhäuser, Boston, 2002]. Our analysis builds upon the framework developed by Métivier and Schochet [Arch. Ration. Mech. Anal., 158 (2001), pp. 61-90] and Alazard [Arch. Ration. Mech. Anal., 180 (2006), pp. 1-73] for nondispersive systems. The strategy involves establishing a priori estimates for the slow motion as well as a priori estimates for the fast motion. The desired convergence is obtained by establishing the local decay of the energy of the fast motion. [PUBLICATION ABSTRACT]</description><identifier>ISSN: 0036-1410</identifier><identifier>EISSN: 1095-7154</identifier><identifier>DOI: 10.1137/100818765</identifier><language>eng</language><publisher>Philadelphia: Society for Industrial and Applied Mathematics</publisher><subject>Applied mathematics ; Heat ; Navier-Stokes equations ; Reynolds number</subject><ispartof>SIAM journal on mathematical analysis, 2012-01, Vol.44 (3), p.1760-1807</ispartof><rights>Copyright © 2012 Society for Industrial and Applied Mathematics</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c187t-5462c1ab63229d3a5e4c23221169c1288005b84733a0f7b45d1ff312cd0c34b33</citedby><cites>FETCH-LOGICAL-c187t-5462c1ab63229d3a5e4c23221169c1288005b84733a0f7b45d1ff312cd0c34b33</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,778,782,3174,27913,27914</link.rule.ids></links><search><creatorcontrib>Levermore, C. David</creatorcontrib><creatorcontrib>Sun, Weiran</creatorcontrib><creatorcontrib>Trivisa, Konstantina</creatorcontrib><title>A Low Mach Number Limit of a Dispersive Navier–Stokes System</title><title>SIAM journal on mathematical analysis</title><description>We establish a low Mach number limit for classical solutions over the whole space of a compressible fluid dynamic system that includes dispersive corrections to the Navier-Stokes equations. The limiting system is similar to a ghost effect system [Y. Sone, Kinetic Theory and Fluid Dynamics, Model. Simul. Sci. Eng. Technol., Birkhäuser, Boston, 2002]. Our analysis builds upon the framework developed by Métivier and Schochet [Arch. Ration. Mech. Anal., 158 (2001), pp. 61-90] and Alazard [Arch. Ration. Mech. Anal., 180 (2006), pp. 1-73] for nondispersive systems. The strategy involves establishing a priori estimates for the slow motion as well as a priori estimates for the fast motion. The desired convergence is obtained by establishing the local decay of the energy of the fast motion. [PUBLICATION ABSTRACT]</description><subject>Applied mathematics</subject><subject>Heat</subject><subject>Navier-Stokes equations</subject><subject>Reynolds number</subject><issn>0036-1410</issn><issn>1095-7154</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNo9kE1OwzAUhC0EEqWw4AaWWLEIvOdnO8kGqSq_UiiLwjpyHEekEBLspKg77sANOQlBRaxmFp9mRsPYMcIZIsXnCJBgEmu1wyYIqYpiVHKXTQBIRygR9tlBCCsA1DKFCbuY8az94PfGPvPF0BTO86xu6p63FTf8sg6d86FeO74w69r578-vZd--uMCXm9C75pDtVeY1uKM_nbKn66vH-W2UPdzczWdZZMcxfaSkFhZNoUmItCSjnLRi9Ig6tSiSBEAViYyJDFRxIVWJVUUobAmWZEE0ZSfb3M6374MLfb5qB_82VuYIFCuhSauROt1S1rcheFflna8b4zcjlP_ek__fQz9tLlRt</recordid><startdate>20120101</startdate><enddate>20120101</enddate><creator>Levermore, C. David</creator><creator>Sun, Weiran</creator><creator>Trivisa, Konstantina</creator><general>Society for Industrial and Applied Mathematics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7RQ</scope><scope>7WY</scope><scope>7WZ</scope><scope>7X2</scope><scope>7XB</scope><scope>87Z</scope><scope>88A</scope><scope>88F</scope><scope>88I</scope><scope>88K</scope><scope>8AL</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FK</scope><scope>8FL</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>KB.</scope><scope>L.-</scope><scope>L6V</scope><scope>LK8</scope><scope>M0C</scope><scope>M0K</scope><scope>M0N</scope><scope>M1Q</scope><scope>M2O</scope><scope>M2P</scope><scope>M2T</scope><scope>M7P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>U9A</scope></search><sort><creationdate>20120101</creationdate><title>A Low Mach Number Limit of a Dispersive Navier–Stokes System</title><author>Levermore, C. David ; Sun, Weiran ; Trivisa, Konstantina</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c187t-5462c1ab63229d3a5e4c23221169c1288005b84733a0f7b45d1ff312cd0c34b33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Applied mathematics</topic><topic>Heat</topic><topic>Navier-Stokes equations</topic><topic>Reynolds number</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Levermore, C. David</creatorcontrib><creatorcontrib>Sun, Weiran</creatorcontrib><creatorcontrib>Trivisa, Konstantina</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Career &amp; Technical Education Database</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>Agricultural Science Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Military Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>Telecommunications (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>Materials Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>ABI/INFORM Global</collection><collection>Agricultural Science Database</collection><collection>Computing Database</collection><collection>Military Database</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Telecommunications Database</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><jtitle>SIAM journal on mathematical analysis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Levermore, C. David</au><au>Sun, Weiran</au><au>Trivisa, Konstantina</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Low Mach Number Limit of a Dispersive Navier–Stokes System</atitle><jtitle>SIAM journal on mathematical analysis</jtitle><date>2012-01-01</date><risdate>2012</risdate><volume>44</volume><issue>3</issue><spage>1760</spage><epage>1807</epage><pages>1760-1807</pages><issn>0036-1410</issn><eissn>1095-7154</eissn><abstract>We establish a low Mach number limit for classical solutions over the whole space of a compressible fluid dynamic system that includes dispersive corrections to the Navier-Stokes equations. The limiting system is similar to a ghost effect system [Y. Sone, Kinetic Theory and Fluid Dynamics, Model. Simul. Sci. Eng. Technol., Birkhäuser, Boston, 2002]. Our analysis builds upon the framework developed by Métivier and Schochet [Arch. Ration. Mech. Anal., 158 (2001), pp. 61-90] and Alazard [Arch. Ration. Mech. Anal., 180 (2006), pp. 1-73] for nondispersive systems. The strategy involves establishing a priori estimates for the slow motion as well as a priori estimates for the fast motion. The desired convergence is obtained by establishing the local decay of the energy of the fast motion. [PUBLICATION ABSTRACT]</abstract><cop>Philadelphia</cop><pub>Society for Industrial and Applied Mathematics</pub><doi>10.1137/100818765</doi><tpages>48</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0036-1410
ispartof SIAM journal on mathematical analysis, 2012-01, Vol.44 (3), p.1760-1807
issn 0036-1410
1095-7154
language eng
recordid cdi_proquest_journals_1037526365
source LOCUS - SIAM's Online Journal Archive
subjects Applied mathematics
Heat
Navier-Stokes equations
Reynolds number
title A Low Mach Number Limit of a Dispersive Navier–Stokes System
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T08%3A42%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Low%20Mach%20Number%20Limit%20of%20a%20Dispersive%20Navier%E2%80%93Stokes%20System&rft.jtitle=SIAM%20journal%20on%20mathematical%20analysis&rft.au=Levermore,%20C.%20David&rft.date=2012-01-01&rft.volume=44&rft.issue=3&rft.spage=1760&rft.epage=1807&rft.pages=1760-1807&rft.issn=0036-1410&rft.eissn=1095-7154&rft_id=info:doi/10.1137/100818765&rft_dat=%3Cproquest_cross%3E2749784051%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1037526365&rft_id=info:pmid/&rfr_iscdi=true