A Low Mach Number Limit of a Dispersive Navier–Stokes System

We establish a low Mach number limit for classical solutions over the whole space of a compressible fluid dynamic system that includes dispersive corrections to the Navier-Stokes equations. The limiting system is similar to a ghost effect system [Y. Sone, Kinetic Theory and Fluid Dynamics, Model. Si...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:SIAM journal on mathematical analysis 2012-01, Vol.44 (3), p.1760-1807
Hauptverfasser: Levermore, C. David, Sun, Weiran, Trivisa, Konstantina
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We establish a low Mach number limit for classical solutions over the whole space of a compressible fluid dynamic system that includes dispersive corrections to the Navier-Stokes equations. The limiting system is similar to a ghost effect system [Y. Sone, Kinetic Theory and Fluid Dynamics, Model. Simul. Sci. Eng. Technol., Birkhäuser, Boston, 2002]. Our analysis builds upon the framework developed by Métivier and Schochet [Arch. Ration. Mech. Anal., 158 (2001), pp. 61-90] and Alazard [Arch. Ration. Mech. Anal., 180 (2006), pp. 1-73] for nondispersive systems. The strategy involves establishing a priori estimates for the slow motion as well as a priori estimates for the fast motion. The desired convergence is obtained by establishing the local decay of the energy of the fast motion. [PUBLICATION ABSTRACT]
ISSN:0036-1410
1095-7154
DOI:10.1137/100818765