Reactive oxygen species and their role in plant defence and cell wall metabolism
Harnessing the toxic properties of reactive oxygen species (ROS) to fight off invading pathogens can be considered a major evolutionary success story. All aerobic organisms have evolved the ability to regulate the levels of these toxic intermediates, whereas some have evolved elaborate signalling pa...
Gespeichert in:
Veröffentlicht in: | Planta 2012-09, Vol.236 (3), p.765-779 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Harnessing the toxic properties of reactive oxygen species (ROS) to fight off invading pathogens can be considered a major evolutionary success story. All aerobic organisms have evolved the ability to regulate the levels of these toxic intermediates, whereas some have evolved elaborate signalling pathways to dramatically increase the levels of ROS and use them as weapons in mounting a defence response, a process commonly referred to as the oxidative burst. The balance between steady state levels of ROS and the exponential increase in these levels during the oxidative burst has begun to shed light on complex signalling networks mediated by these molecules. Here, we discuss the different sources of ROS that are present in plant cells and review their role in the oxidative burst. We further describe two well-studied ROS generating systems, the NADPH oxidase and apoplastic peroxidase proteins, and their role as the primary producers of ROS during pathogen invasion. We then discuss what is known about the metabolic and proteomic fluxes that occur in plant cells during the oxidative burst and after pathogen recognition, and try to highlight underlying biochemical processes that may provide more insight on the complex regulation of ROS in plants. |
---|---|
ISSN: | 0032-0935 1432-2048 |
DOI: | 10.1007/s00425-012-1696-9 |