Inference for Box-Cox Transformed Threshold GARCH Models with Nuisance Parameters

Generalized autoregressive conditional heteroscedastic (GARCH) models have been widely used for analyzing financial time series with time-varying volatilities. To overcome the defect of the Gaussian quasi-maximum likelihood estimator (QMLE) when the innovations follow either heavy-tailed or skewed d...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Scandinavian journal of statistics 2012-09, Vol.39 (3), p.568-589
Hauptverfasser: LEE, SANGYEOL, LEE, TAEWOOK
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Generalized autoregressive conditional heteroscedastic (GARCH) models have been widely used for analyzing financial time series with time-varying volatilities. To overcome the defect of the Gaussian quasi-maximum likelihood estimator (QMLE) when the innovations follow either heavy-tailed or skewed distributions, Berkes & Horváth (Ann. Statist., 32, 633, 2004) and Lee & Lee (Scand. J. Statist. 36, 157, 2009) considered likelihood methods that use two-sided exponential, Cauchy and normal mixture distributions. In this paper, we extend their methods for Box-Cox transformed threshold GARCH model by allowing distributions used in the construction of likelihood functions to include parameters and employing the estimated quasi-likelihood estimators (QELE) to handle those parameters. We also demonstrate that the proposed QMLE and QELE are consistent and asymptotically normal under regularity conditions. Simulation results are provided for illustration.
ISSN:0303-6898
1467-9469
DOI:10.1111/j.1467-9469.2012.00805.x