NORMAL FORMS FOR NONINTEGRABLE ALMOST CR STRUCTURES

We propose two constructions extending the Chern-Moser normal form to non-integrable Levi-nondegenerate (hypersurface type) almost CR structures. One of them translates the Chern-Moser normalization into pure intrinsic setting, whereas the other directly extends the (extrinsic) Chern-Moser normal fo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:American journal of mathematics 2012-08, Vol.134 (4), p.915-947
1. Verfasser: Zaitsev, Dmitri
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We propose two constructions extending the Chern-Moser normal form to non-integrable Levi-nondegenerate (hypersurface type) almost CR structures. One of them translates the Chern-Moser normalization into pure intrinsic setting, whereas the other directly extends the (extrinsic) Chern-Moser normal form by allowing non-CR embeddings that are in some sense "maximally CR". One of the main differences with the classical integrable case is the presence of the non-integrability tensor at the same order as the Levi form, making impossible a good quadric approximation—a key tool in the Chern-Moser theory. Partial normal forms are obtained for general almost CR structures of any CR codimension, in particular, for almost-complex structures. Applications are given to the equivalence problem and the Lie group structure of the group of all CR-diffeomorphisms.
ISSN:0002-9327
1080-6377
1080-6377
DOI:10.1353/ajm.2012.0027