Investigation of Driver Performance With Night-Vision and Pedestrian-Detection Systems-Part 2: Queuing Network Human Performance Modeling

This paper introduces a queueing network-based computational model to explain driver performance in a pedestrian-detection task assisted with night-vision-enhancement systems. The computational cognitive model simulated the pedestrian-detection task using images displayed by two night-vision systems...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on intelligent transportation systems 2010-12, Vol.11 (4), p.765-772
Hauptverfasser: Ji Hyoun Lim, Yili Liu, Tsimhoni, Omer
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This paper introduces a queueing network-based computational model to explain driver performance in a pedestrian-detection task assisted with night-vision-enhancement systems. The computational cognitive model simulated the pedestrian-detection task using images displayed by two night-vision systems as input stimuli. The system equipped with a far-infrared (FIR) sensor generated less-cluttered images than the system equipped with a near-infrared (NIR) sensor. Using a reinforcement learning process, the model developed eye-movement strategies for each night-vision system. The differences in eye-movement strategies generated different eye-movement behaviors, in accord with the empirical findings.
ISSN:1524-9050
1558-0016
DOI:10.1109/TITS.2010.2049844