Real-Time Visual Concept Classification
As datasets grow increasingly large in content-based image and video retrieval, computational efficiency of concept classification is important. This paper reviews techniques to accelerate concept classification, where we show the trade-off between computational efficiency and accuracy. As a basis,...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on multimedia 2010-11, Vol.12 (7), p.665-681 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | As datasets grow increasingly large in content-based image and video retrieval, computational efficiency of concept classification is important. This paper reviews techniques to accelerate concept classification, where we show the trade-off between computational efficiency and accuracy. As a basis, we use the Bag-of-Words algorithm that in the 2008 benchmarks of TRECVID and PASCAL lead to the best performance scores. We divide the evaluation in three steps: 1) Descriptor Extraction, where we evaluate SIFT, SURF, DAISY, and Semantic Textons. 2) Visual Word Assignment, where we compare a k-means visual vocabulary with a Random Forest and evaluate subsampling, dimension reduction with PCA, and division strategies of the Spatial Pyramid. 3) Classification, where we evaluate the χ 2 , RBF, and Fast Histogram Intersection kernel for the SVM. Apart from the evaluation, we accelerate the calculation of densely sampled SIFT and SURF, accelerate nearest neighbor assignment, and improve accuracy of the Histogram Intersection kernel. We conclude by discussing whether further acceleration of the Bag-of-Words pipeline is possible. Our results lead to a 7-fold speed increase without accuracy loss, and a 70-fold speed increase with 3% accuracy loss. The latter system does classification in real-time, which opens up new applications for automatic concept classification. For example, this system permits five standard desktop PCs to automatically tag for 20 classes all images that are currently uploaded to Flickr. |
---|---|
ISSN: | 1520-9210 1941-0077 |
DOI: | 10.1109/TMM.2010.2052027 |