Study on Mechanical, Thermal and Electrical Characterizations of Nano-SiC/Epoxy Composites

This report covers the results of a study on evaluating the effect of nano-SiC particles on mechanical, thermal and electrical properties of epoxy by lap shear, TGA, DSC and electrical tests. Epoxy composites filled with micro-SiC particles were also studied for comparison. The mechanisms of perform...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Polymer journal 2009-01, Vol.41 (1), p.51-57
Hauptverfasser: Zhou, Tianle, Wang, Xin, Gu, Mingyuan, Xiong, Dangsheng
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This report covers the results of a study on evaluating the effect of nano-SiC particles on mechanical, thermal and electrical properties of epoxy by lap shear, TGA, DSC and electrical tests. Epoxy composites filled with micro-SiC particles were also studied for comparison. The mechanisms of performance improvement were discussed in detail. The results showed that with identical loading, silane treated nano-SiC filled nanocomposites have the best properties. The volume resistivity decrease, dielectric constant ε increase and loss tangent tan(δ) increase by addition of silane treated nano-SiC particles are smaller than those by the other fillers. Silane treatment of nanoparticles improves each performance, including increases shear strength, thermal stability, volume resistivity and decreases ε and (δ). The addition of nano-SiC particles remarkably improves shear strength, ε and tan(δ), while slightly enhances thermal stability of epoxy. 8 vol. % silane treated nano-SiC/epoxy composite has the highest shear strength 10.6 MPa with the maximum enhancement, 80%, over the neat resin. It also has good temperature independence of dielectric properties and enough volume resistivity, which meet the demand of some microelectronics materials.
ISSN:0032-3896
1349-0540
DOI:10.1295/polymj.PJ2008173