Cauchy-Density-Based Basic Unit Layer Rate Controller for H.264/AVC
The rate control problem has been extensively studied in parallel to the development of the different video coding standards. The bit allocation via Cauchy-density-based rate-distortion modeling of the discrete cosine transform coefficients has proved to be one of the most accurate solutions at pict...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on circuits and systems for video technology 2010-08, Vol.20 (8), p.1139-1143 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The rate control problem has been extensively studied in parallel to the development of the different video coding standards. The bit allocation via Cauchy-density-based rate-distortion modeling of the discrete cosine transform coefficients has proved to be one of the most accurate solutions at picture level. Nevertheless, in some specific applications operating in real-time low-delay environments, a basic unit (BU) layer is recommended in order to provide a good tradeoff between picture quality and delay control. In this letter, a novel BU bit allocation for H.264/advanced video coding is proposed based on a simplified Cauchy probability density function source modeling. The experimental results are twofold: 1) the proposed rate control algorithm (RCA) achieves an average peak signal-to-noise ratio improvement of 0.28 dB respect to a well-known BU layer RCA, while maintaining a similar buffer occupancy evolution, and 2) it achieves to notably reduce the buffer occupancy fluctuations respect to a well-known picture layer RCA, while maintaining similar quality levels. |
---|---|
ISSN: | 1051-8215 1558-2205 |
DOI: | 10.1109/TCSVT.2010.2051369 |